, Volume 4, Issue 1, pp 117–122 | Cite as

Seletracetam (UCB 44212)

  • Barbara Bennett
  • Alain Matagne
  • Philippe Michel
  • Michèle Leonard
  • Miranda Cornet
  • Marie-Anne Meeus
  • Nathalie Toublanc


Better pharmacotherapies for epilepsy are needed for patients who are refractory to or have tolerability difficulties with current treatments. Seletracetam, a new drug in epilepsy development, is a pyrrolidone derivative structurally related to levetiracetam (trade name Keppra). It was discovered because of its high binding affinity to the synaptic vesicle 2A (SV2A) protein, which is now known to be the binding site for this family of compounds. Seletracetam shows very potent seizure suppression in models of acquired or genetic epilepsy, as well as high CNS tolerability in various animal models. Pharmacokinetic studies in animals suggest that seletracetam is rapidly and highly absorbed, with linear and time-independent pharmacokinetics. Seletracetam appears neither to inhibit nor to induce the major human drug metabolizing enzymes, and it demonstrates low plasma protein binding (<10%), which suggests a low potential for drug-drug interactions. Initial studies in humans demonstrated first-order monocompartmental kinetics with a half-life of 8 h and an oral bioavailability of >90%. Studies in healthy volunteers showed that the treatment emergent adverse events were of mild to moderate severity, were mostly of CNS origin and were resolved within 24 h. Altogether, these results suggest that seletracetam represents a promising new antiepileptic drug candidate, one that demonstrates a potent, broad spectrum of seizure protection and a high CNS tolerability in animal models, with initial clinical findings suggestive of straightforward pharmacokinetics and good tolerability.

Key Words

Seletracetam epilepsy SV2A pharmacokinetics kindled anticonvulsant 


  1. 1.
    Sander JW. The epidemiology of epilepsy revisited. Curr Opin Neurol 2003;16: 165–170.PubMedCrossRefGoogle Scholar
  2. 2.
    Sander JW, Shorvon SD. Epidemiology of the epilepsies. J Neurol Neurosurg Psychiatry 1996;61: 433–443 [Erratum in: J Neurol Neurosurg Psychiatry 1997;62:679].PubMedCrossRefGoogle Scholar
  3. 3.
    Dreifuss FE. Classification of epileptic seizures. In: Engel J Jr, Pedley TA, editors. Epilepsy: a comprehensive textbook. Vol. 1. Philadelphia: Lippincott Raven Publishers, 1997. p. 517–524.Google Scholar
  4. 4.
    Kwan P, Brodie MJ. Early identification of refractory epilepsy. New Engl J Med 2000;342: 314–319.PubMedCrossRefGoogle Scholar
  5. 5.
    Cockerell OC, Johnson AL, Sander JW, Shorvon SD. Prognosis of epilepsy: a review and further analysis of the first nine years of the British National General Practice Study of Epilepsy, a prospective population-based study. Epilepsia 1997;38: 31–46.PubMedCrossRefGoogle Scholar
  6. 6.
    Mattson RH, Cramer JA, Collins JF; Department of Veterans Affairs Epilepsy Cooperative Studies No. 118 and No. 264 Group. Prognosis for total control of complex partial and secondarily generalized tonic clonic seizures. Neurology 1996;47: 68–76.PubMedGoogle Scholar
  7. 7.
    Brodie MJ. Do we need any more new antiepileptic drugs? Epilepsy Res 2001;45: 3–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Brodie MJ, Dichter MA. Antiepileptic drugs. N Engl J Med 1996; 334: 168–175 [Erratum in: N Engl J Med 1996;334:479].PubMedCrossRefGoogle Scholar
  9. 9.
    Fuks B, Bouché F. Affinity of ucb 44212 for levetiracetam binding site (LBS) and its binding profile. UCB report reference code: RRLE03B2402. Brussels: UCB Pharma, 2003.Google Scholar
  10. 10.
    Lynch BA, Lambeng N, Nocka K, et al. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. PNAS 2004;101: 9861–9866.PubMedCrossRefGoogle Scholar
  11. 11.
    Noyer M, Gillard M, Matagne A, Hénichart JP, Wülfert E. The novel antiepileptic drug levetiracetam (ucb L059) appears to act via a specific binding site in CNS membranes. Eur J Pharmacol 1995;286: 137–146.PubMedCrossRefGoogle Scholar
  12. 12.
    Zona C, Niespodziany I, Pieri M, Klitgaard H, Margineanu D-G. Seletracetam (ucb 44212), a new pyrrolidone derivative, lacks effect on Na+ currents in rat brain neuronsin vitro. Epilepsia 2005;46(Suppl 8): 116.Google Scholar
  13. 13.
    Matagne A. Electrophysiological examination of ucb 44212 on voltage-gated K+ currents in cultured mouse hippocampal neurons. UCB report reference code: RRLE02G0305. Brussels: UCB Pharma, 2005.Google Scholar
  14. 14.
    Pisani A, Bonsi P, Martella G, Cuomo D, Klitgaard H, Margineanu D. Seletracetam (ucb 44212), a new pyrrolidone derivative, inhibits high-voltage-activated Ca2+ currents and intracellular [Ca2+] increase in rat cortical neuronsin vitro. Epilepsia 2005;46(Suppl 8): 119.Google Scholar
  15. 15.
    Lukyanetz EA, Shkryl VM, Kostyuk PG. Selective blockade of N-type calcium channels by levetiracetam. Epilepsia 2002;43: 9–18.PubMedCrossRefGoogle Scholar
  16. 16.
    Pisani A, Bonsi P, Martella G, et al. Intracellular calcium increase in epileptiform activity: modulation by levetiracetam and lamotrigine. Epilepsia 2004;45: 719–728.PubMedCrossRefGoogle Scholar
  17. 17.
    Rigo JM, Nguyen L, Hans G, et al. Seletracetam (ucb 44212): Effect on inhibitory and excitatory neurotransmission. Epilepsia 2005;46(Suppl 8): 110.Google Scholar
  18. 18.
    Matagne A, Margineanu D, Michel P, Kenda B, Klitgaard H. Seletracetam (UCB 44212), a new pyrrolidone derivative, reveals potent activity inin vitro andin vivo models of epilepsy. J Neurol Sci 2005;238(Suppl 1): S133.Google Scholar
  19. 19.
    Marescaux C, Vergnes M, Depaulis A. Genetic absence epilepsy in rats from Strasbourg: a review. J Neural Transm Suppl 1992;35: 37–69.PubMedGoogle Scholar
  20. 20.
    Dunham NW, Miya TS. A note on a simple apparatus for detecting neurological deficit in rats and mice. J Am Pharm Assoc 1957;46: 208–209.Google Scholar
  21. 21.
    Loscher W, Nolting B. The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. IV. Protective indices. Epilepsy Res 1991;9: 1–10.PubMedCrossRefGoogle Scholar
  22. 22.
    Klitgaard H, Matagne A, Gobert J, Wulfert E. Evidence for a unique profile of levetiracetam in rodent models of seizures and epilepsy. Eur J Pharmacol 1998;353: 191–206.PubMedCrossRefGoogle Scholar
  23. 23.
    Dubois M, Vaemewijck A. ucb 44212: Pharmacokinetics in the Wistar rat after single oral administration of doses ranging from 3 to 1000 mg/kg. UCB report reference code: RRLE02M1005. Brussels: UCB Pharma, 2003.Google Scholar
  24. 24.
    Ogilvie B. ucb 44212: Evaluation as a potential inhibitor of human microsomal epoxide hydrolase. UCB report reference code: RRLE03G1504. Brussels: UCB Pharma, 2004.Google Scholar
  25. 25.
    Ndikum-Moffor F.In vitro evaluation of ucb 44212 as an inducer of cytochrome P450 expression in cultured human hepatocytes. UCB report reference code: RRLE03F2403. Brussels: UCB Pharma, 2004.Google Scholar
  26. 26.
    Bassett S. ucb 44212: 13-week oral toxicity study in Wistar rats followed by a 4-week recovery period. UCB report reference code: RRLE04B1908. Brussels: UCB Pharma, 2005.Google Scholar
  27. 27.
    Harvey P. ucb 44212: 13-week oral toxicity study in beagle dogs followed by a 4-week recovery period. UCB report reference code: RRLE04B1108. Brussels: UCB Pharma, 2005.Google Scholar
  28. 28.
    Perks DA. ucb 44212: Oral (gavage) embryofoetal development study in the rabbit. UCB report reference code: RRLE04A1211. Brussels: UCB Pharma, 2005.Google Scholar
  29. 29.
    Goldwater DR, Lu Z, Salas V, et al. Seletracetam single rising dose safety, tolerability and pharmacokinetics in healthy subjects. Presented at the European Congress on Epilepsy; July 2–6, 2006; Helsinki.Google Scholar
  30. 30.
    Leese PT, Hulhoven R, Salas V, et al. Seletracetam multiple dose safety, tolerability and pharmacokinetics in healthy subjects. Presented at the European Congress on Epilepsy; July 2–6, 2006; Helsinki.Google Scholar
  31. 31.
    Ramael S, Sargentini-Maier ML, Toublanc N, Dubin GM, Daoust A, Stockis A. Pharmacokinetics and metabolism of 14C-seletracetam in healthy subjects. Presented at the European Congress on Epilepsy; July 2–6, 2006; Helsinki, Finland.Google Scholar
  32. 32.
    Perucca E, Beghi E, Dulac O, Shorvon S, Tomson T. Assessing risk to benefit ratio in antiepileptic drug therapy. Epilepsy Res 2000;41: 107–139.PubMedCrossRefGoogle Scholar
  33. 33.
    Mattson RH, Cramer JA, Collins JF. Early tolerance to antiepileptic drug side effects: a controlled trial of 24 patients. In: Frey H-H, Fröscher W, Koella WP, Meinardi H, editors. Tolerance to beneficial and adverse effects of antiepileptic drugs. New York: Raven Press, 1986. p. 149–156.Google Scholar
  34. 34.
    Gilliam F. Optimizing health outcomes in active epilepsy. Neurology 2002;58(Suppl 5): S9-S20.PubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2007

Authors and Affiliations

  • Barbara Bennett
    • 5
  • Alain Matagne
    • 1
  • Philippe Michel
    • 2
  • Michèle Leonard
    • 3
  • Miranda Cornet
    • 3
  • Marie-Anne Meeus
    • 4
  • Nathalie Toublanc
    • 4
  1. 1.Preclinical CNSUCB Braine-l’AlleudBelgium
  2. 2.ChemistryUCB Braine-l’AlleudBelgium
  3. 3.Non-clinical DevelopmentUCB Braine-l’AlleudBelgium
  4. 4.Clinical PharmacologyUCB Braine-l’AlleudBelgium
  5. 5.Clinical Development, Neurology/Psychiatry Therapeutic AreaUCB, Inc.Smyrna

Personalised recommendations