Neurotherapeutics

, Volume 4, Issue 1, pp 18–61 | Cite as

Molecular targets for antiepileptic drug development

  • Brian S. Meldrum
  • Michael A. Rogawski
Article

Summary

This review considers how recent advances in the physiology of ion channels and other potential molecular targets, in conjunction with new information on the genetics of idiopathic epilepsies, can be applied to the search for improved antiepileptic drugs (AEDs). Marketed AEDs predominantly target voltage-gated cation channels (the α subunits of voltage-gated Na+ channels and also T-type voltage-gated Ca2+ channels) or influence GABA-mediated inhibition. Recently, α2-δ voltage-gated Ca2+ channel subunits and the SV2A synaptic vesicle protein have been recognized as likely targets. Genetic studies of familial idiopathic epilepsies have identified numerous genes associated with diverse epilepsy syndromes, including genes encoding Na+ channels and GABAA receptors, which are known AED targets. A strategy based on genes associated with epilepsy in animal models and humans suggests other potential AED targets, including various voltage-gated Ca2+ channel subunits and auxiliary proteins, A- or M-type voltage-gated K+ channels, and ionotropic glutamate receptors. Recent progress in ion channel research brought about by molecular cloning of the channel subunit proteins and studies in epilepsy models suggest additional targets, including G-protein-coupled receptors, such as GABAB and metabotropic glutamate receptors; hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel subunits, responsible for hyperpolarization-activated currentIh; connexins, which make up gap junctions; and neurotransmitter transporters, particularly plasma membrane and vesicular transporters for GABA and glutamate. New information from the structural characterization of ion channels, along with better understanding of ion channel function, may allow for more selective targeting. For example, Na+ channels underlying persistent Na+ currents or GABAA receptor isoforms responsible for tonic (extrasynaptic) currents represent attractive targets. The growing understanding of the pathophysiology of epilepsy and the structural and functional characterization of the molecular targets provide many opportunities to create improved epilepsy therapies.

Key Words

Epilepsy channelopathy antiepileptic drug sodium channel calcium channel potassium channel GABA receptor glutamate receptor GABA transporter glutamate transporter gap junction 

References

  1. 1.
    Kwan P, Brodie MJ. Early identification of refractory epilepsy. New Engl J Med 2000;342: 314–319.PubMedGoogle Scholar
  2. 2.
    Kwan P, Brodie MJ. Drug treatment of epilepsy: when does it fail and how to optimize its use? CNS Spectr 2004;9: 110–119.PubMedGoogle Scholar
  3. 3.
    Putnam TJ, Merritt HH. Experimental determination of the anti-convulsant properties of some phenyl derivatives. Science 1937; 85: 525–526.PubMedGoogle Scholar
  4. 4.
    Merritt HH, Putnam TJ. Sodium diphenyl hydantoinate in the treatment of convulsive disorders. JAMA 1938;111: 1068–1073.Google Scholar
  5. 5.
    Krall RL, Penry JK, White BG, Kupferberg HJ, Swinyard EA. Anti-epileptic drug development. II. Anticonvulsant drug screening. Epilepsia 1978;19: 404–428.Google Scholar
  6. 6.
    Schechter PJ, Hanke NF, Grove J, Huebert N, Sjoerdsma A. Biochemical and clinical effects of γ-vinyl GABA in patients with epilepsy. Neurology 1984;34;182–186.PubMedGoogle Scholar
  7. 7.
    Jung MJ, Lippert B, Metcalf BW, Bohlen P, Schechter PJ. γ-Vinyl GABA (4-amino-hex-5-enoic acid), a new selective irreversible inhibitor of GABA-T: effects on brain GABA metabolism in mice. J Neurochem 1977;29: 797–802.PubMedGoogle Scholar
  8. 8.
    Schachter SC. A review of the antiepileptic drug tiagabine. Clin Neuropharmacol 1999;22: 312–317.PubMedGoogle Scholar
  9. 9.
    Horton RW, Collins JF, Anlezark G, Meldrum BS. Convulsant and anticonvulsant actions in DBA/2 mice of compounds blocking the reuptake of GABA. Eur J Pharmacol 1979;59: 75–83.PubMedGoogle Scholar
  10. 10.
    Rogawski MA. Molecular targets versus models for new antiepileptic drug discovery. Epilepsy Res 2006;68: 22–28.PubMedGoogle Scholar
  11. 11.
    Rogawski MA, Löscher W. The neurobiology of antiepileptic drugs. Nat Rev Neurosci 2004;5: 553–564.PubMedGoogle Scholar
  12. 12.
    Woodbury DM. Convulsant drugs: mechanisms of action. Adv Neurol 1980;27: 249–303.PubMedGoogle Scholar
  13. 13.
    Meldrum BS. Epilepsy and γ-aminobutyric acid-mediated inhibition. Int Rev Neurobiol 1975;17: 1–36.PubMedGoogle Scholar
  14. 14.
    Sandoval MRL, Lebrun I. TSII toxin isolated fromTityus serrulatus scorpion venom: behavioral, electroencephalographic, and histopathologic studies. Brain Res Bull 2003;62: 165–172.PubMedGoogle Scholar
  15. 15.
    Possani LD, Becerril B, Delepierre M, Tytgat J. Scorpion toxins specific for Na+-channels. Eur J Biochem 1999;264: 287–300.PubMedGoogle Scholar
  16. 16.
    Bai ZT, Zhao R, Zhang XY, Chen J, Liu T, Ji YH. The epileptic seizures induced by BmK I, a modulator of sodium channels. Exp Neurol 2006;197: 167–176.PubMedGoogle Scholar
  17. 17.
    Shelton RC, Grebb JA, Freed WJ. Induction of seizures in mice by intracerebroventricular administration of the calcium channel agonist Bay K 8644. Brain Res 1987;402: 399–402.PubMedGoogle Scholar
  18. 18.
    Hayashi T. A physiological study of epileptic seizures following cortical stimulation in animals and its application to human clinics. Jpn J Physiol 1952;3: 46–64.PubMedGoogle Scholar
  19. 19.
    Meldrum BS. Excitatory amino acid receptors and their role in epilepsy and cerebral ischemia. Ann N Y Acad Sci 1995;757: 492–505.PubMedGoogle Scholar
  20. 20.
    Löscher W, Rogawski MA. Epilepsy. In: Lodge D, Danysz W, Parsons CG, eds. Ionotropic glutamate receptors as therapeutic targets. Johnson City, TN: F.P. Graham Publishing Co., 2002; 91–132.Google Scholar
  21. 21.
    Gandolfo G, Gottesmann C, Bidard JN, Lazdunski M. Subtypes of K+ channels differentiated by the effect of K+ channel openers upon K+ channel blocker induced seizures. Brain Res 1989;495: 189–192.PubMedGoogle Scholar
  22. 22.
    Juhng KN, Kokate TG, Yamaguchi S, et al. Induction of seizures by the potent K+ channel-blocking scorpion venom peptide toxins tityustoxin-Kα and pandinustoxin-Kα. Epilepsy Res 1999;34: 177–186.PubMedGoogle Scholar
  23. 23.
    Yamaguchi S, Rogawski MA. Effects of anticonvulsant drugs on 4-aminopyridine-induced seizures in mice. Epilepsy Res 1992; 11: 9–16.PubMedGoogle Scholar
  24. 24.
    Peña F, Alavez-Pérez N. Epileptiform activity induced by pharmacologic reduction of M-current in the developing hippocampus in vitro. Epilepsia 2006;47: 47–54.PubMedGoogle Scholar
  25. 25.
    Rogawski MA. Diverse mechanisms of antiepileptic drugs in the development pipeline. Epilepsy Res 2006;69: 273–294.PubMedGoogle Scholar
  26. 26.
    Gasior M, Rogawski MA, Hartman AL. Neuroprotective and disease-modifying effects of the ketogenic diet. Behav Pharmacol 2006;17: 431–439.PubMedGoogle Scholar
  27. 27.
    Traub RD, Michelson-Law H, Bibbig AE, Buhl EH, Whittington MA. Gap junctions, fast oscillations and the initiation of seizures. Adv Exp Med Biol 2004;548: 110–122.PubMedGoogle Scholar
  28. 28.
    Chen K, Aradi I, Santhakumar V, Soltesz I. H-channels in epilepsy: new targets for seizure control? Trends Pharmacol Sci 2002;23: 552–557.PubMedGoogle Scholar
  29. 29.
    Shank RP, Gardocki JF, Streeter AJ, Maryanoff BE. An overview of the preclinical aspects of topiramate: pharmacology, pharmacokinetics, and mechanism of action. Epilepsia 2000;41(suppl 1): S3-S9.PubMedGoogle Scholar
  30. 30.
    Blum R, Konnerth A. Neurotrophin-mediated rapid signaling in the central nervous system: mechanisms and functions. Physiology (Bethesda) 2005;20: 70–78.Google Scholar
  31. 31.
    Scharfman HE. Brain-derived neurotrophic factor and epilepsy: a missing link? Epilepsy Curr 2005;5: 83–88.PubMedGoogle Scholar
  32. 32.
    Steinlein OK. Genetic mechanisms that underlie epilepsy. Nat Rev Neurosci 2004;5: 400–408.PubMedGoogle Scholar
  33. 33.
    Graves TD. Ion channels and epilepsy. QJM 2006;99: 201–217.PubMedGoogle Scholar
  34. 34.
    Suzuki T, Delgado-Escueta AV, Aguan K, et al. Mutations inEFHC1 cause juvenile myoclonic epilepsy. Nat Genet 2004;36: 842–849.PubMedGoogle Scholar
  35. 35.
    Schulte U, Thumfart JO, Klöcker N, et al. The epilepsy linked Lgil protein assembles into presynaptic Kv1 channels and inhibits inactivation by Kvβ1. Neuron 2006;49: 697–706.PubMedGoogle Scholar
  36. 36.
    Ferraro TN, Buono RJ. The relationship between the pharmacology of antiepileptic drugs and human gene variation: an overview. Epilepsy Behav 2005;7: 18–36.PubMedGoogle Scholar
  37. 37.
    Yu FH, Catterall W. The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Sci STKE 2004;2004(253):rel5.Google Scholar
  38. 38.
    Yu FH, Yarov-Yarovoy V, Gutman GA, Catterall WA. Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol Rev 2005;57: 387–395.PubMedGoogle Scholar
  39. 39.
    Catterall WA, Goldin AL, Waxman SG. International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 2005;57: 397–409.PubMedGoogle Scholar
  40. 40.
    Wallace RH, Scheffer IE, Parasivam G. Generalized epilepsy with febrile seizures plus: mutation of the sodium channel subunit SCN1B. Neurology 2002;58: 1426–1429.PubMedGoogle Scholar
  41. 41.
    Lossin C, Wang DW, Rhodes TH, Vanoye CG, George AL Jr. Molecular basis of an inherited epilepsy. Neuron 2002;34: 877–884.PubMedGoogle Scholar
  42. 42.
    Spampanato J, Aradi I, Soltesz I, Goldin AL. Increased neuronal firing in computer simulations of sodium channel mutations that cause generalized epilepsy with febrile seizures plus. J Neurophysiol 2004;91: 2040–2050.PubMedGoogle Scholar
  43. 43.
    Claes L, Ceulemans B, Audenaert D, et al. De novoSCN1A mutations are a major cause of severe myoclonic epilepsy of infancy. Hum Mutat 2003;21: 615–621.PubMedGoogle Scholar
  44. 44.
    Kanai K, Hirose S, Oguni H. Effect of localization of missense mutations inSCN1A on epilepsy phenotype severity. Neurology 2004;63: 329–334.PubMedGoogle Scholar
  45. 45.
    Fujiwara T, Sugawara T, Mazaki-Miyazaki E, et al. Mutations of sodium channel α subunit type 1 (SCN1A) in intractable childhood epilepsies with frequent generalized tonic-clonic seizures. Brain 2003; 126: 531–546.PubMedGoogle Scholar
  46. 46.
    Berkovic SF, Heron SE, Giordano L, et al. Benign familial neonatal-infantile seizures: characterization of a new sodium channelopathy. Ann Neurol 2004;55: 550–557.PubMedGoogle Scholar
  47. 47.
    Ragsdale DS, McPhee JC, Scheuer T, Catterall WA. Molecular determinants of state-dependent block of Na+ channels by local anesthetics. Science 1994;265: 1724–1728.PubMedGoogle Scholar
  48. 48.
    Ragsdale DS, McPhee JC, Scheuer T, Catterall WA. Common molecular determinants of local anasthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. Proc Natl Acad Sci U S A 1996;93: 9270–9275.PubMedGoogle Scholar
  49. 49.
    Yarov-Yarovoy V, Brown J, Sharp EM, Clare JJ, Scheuer T, Catterall W. Molecular determinants of voltage-dependent gating and binding of pore-blocking drugs in transmembrane segment IIIS6 of the Na+ channel α subunit. J Biol Chem 2001;276: 20–27.PubMedGoogle Scholar
  50. 50.
    Liu G, Yarov-Yarovoy V, Nobbs M, Clare JJ, Scheuer T, Catterall WA. Differential interactions of lamotrigine and related drugs with transmembrane segment IV6 of voltage-gated sodium channels. Neuropharmacology 2003;44: 413–422.PubMedGoogle Scholar
  51. 51.
    Lingamaneni R, Hemmings HC Jr. Effects of anticonvulsants on veratridine- and KCl-evoked glutamate release from rat cortical synaptosomes. Neurosci Lett 1999;276: 127–130.PubMedGoogle Scholar
  52. 52.
    Rogawski MA, Taylor CP. Ion channels. In: Löscher W, Schmidt D. New horizons in the development of antiepileptic drugs: innovative strategies. Epilepsy Res 2006;69:183–272.Google Scholar
  53. 53.
    Prakriya M, Mennerick S. Selective depression of low-release probability excitatory synapses by sodium channel blockers. Neuron 2000;26: 671–682.PubMedGoogle Scholar
  54. 54.
    He Y, Zorumski CF, Mennerick S. Contribution of presynaptic Na+ channel inactivation to paired-pulse synaptic depression in cultured hippocampal neurons. J Neurophysiol 2002;87: 925–936.PubMedGoogle Scholar
  55. 55.
    Cunningham MO, Dhillon A, Wood SJ, Jones RS. Reciprocal modulation of glutamate and GABA release may underlie the anticonvulsant effect of phenytoin. Neuroscience 2000;95: 343–351.PubMedGoogle Scholar
  56. 56.
    Cunningham MO, Jones RSG. The anticonvulsant, lamotrigine decreases spontaneous glutamate release but increases spontaneous GABA release in the rat entorhinal cortex in vitro. Neuropharmacology 2000;39: 2139–2146.PubMedGoogle Scholar
  57. 57.
    Waldmeier PC, Martin P, Stocklin K, Portet C, Schmutz M. Effect of carbamazepine, oxcarbazepine and lamotrigine on the increase in extracellular glutamate elicited by veratridine in rat cortex and striatum. Naunyn Schmiedebergs Arch Pharmacol 1996;354: 164–172.PubMedGoogle Scholar
  58. 58.
    Jung HY, Mickus T, Spruston N. Prolonged sodium channel inactivation contributes to dendritic action potential attenuation in hippocampal pyramidal neurons. J Neurosci 1997;17: 6639–6646.PubMedGoogle Scholar
  59. 59.
    Colbert CM, Magee JC, Hoffman DA, Johnston D. Slow recovery from inactivation of Na+ channels underlies the activity-dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons. J Neurosci 1997;17: 6512–6521.PubMedGoogle Scholar
  60. 60.
    Schwindt PC, Crill WE. Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons. J Neurophysiol 1995;74: 2220–2224.PubMedGoogle Scholar
  61. 61.
    Cronin NB, O’Reilly A, Duclohier H, Wallace BA. Binding of the anticonvulsant drug lamotrigine and the neurotoxin batrachotoxin to voltage-gated sodium channels induces conformational changes associated with block and steady-state activation. J Biol Chem 2003;278: 10675–10682.PubMedGoogle Scholar
  62. 62.
    Ragsdale DS, Scheuer T, Catterall WA. Frequency and voltage-dependent inhibition of type IIA Na+ channels, expressed in a mammalian cell line, by local anesthetic, antiarrhythmic, and anticonvulsant drugs. Mol Pharmacol 1991;40: 756–765.PubMedGoogle Scholar
  63. 63.
    Kuo CC. A common anticonvulsant binding site for phenytoin, carbamazepine, and lamotrigine in neuronal Na+ channels. Mol Pharmacol 1998;54: 712–721.PubMedGoogle Scholar
  64. 64.
    Sun Q, Tafesse L, Limberis JT, Islam K, Kyle DJ. Parallel synthesis of a biased library of thiazolidinones as novel sodium channel antagonists. Comb Chem High Throughput Screen 2003; 6: 481–488.PubMedGoogle Scholar
  65. 65.
    Ilyin VI, Pomonis JD, Whiteside GT, et al. Pharmacology of 2-[4-(4-chloro-2-fluorophenoxy)phenyl]-pyrimidine-4-carboxamide: a potent, broad-spectrum state-dependent sodium channel blocker for treating pain states. J Pharmacol Exp Ther 2006;318: 1083–1093.PubMedGoogle Scholar
  66. 66.
    Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 2005;57: 411–425.PubMedGoogle Scholar
  67. 67.
    Tsien RW, Lipscombe D, Madison D, Bley K, Fox A. Reflections on calcium channel diversity, 1988–1994. Trends Neurosci 1995; 18;52–54.PubMedGoogle Scholar
  68. 68.
    Wolf M, Eberhart A, Glossmann, H, Striessnig J, Grigorieff N. Visualization of the domain structure of an L-type Ca+ channel using electron cryo-microscopy. J Mol Biol 2003;332: 171–182.PubMedGoogle Scholar
  69. 69.
    Felix R. Insights from mouse models of absence epilepsy into Ca2+ channel physiology and disease etiology. Cell Mol Neurobiol 2002;22: 103–120.PubMedGoogle Scholar
  70. 70.
    Jones OT. Ca2+ channels and epilepsy. Eur J Pharmacol 2002; 447: 211–225.PubMedGoogle Scholar
  71. 71.
    Pietrobon D. Function and dysfunction of synaptic calcium channels: insights from mouse models. Curr Opin Neurobiol 2005;15: 257–265.PubMedGoogle Scholar
  72. 72.
    Coulter DA, Huguenard JR, Prince DA. Characterization of ethosuximide reduction of low-threshold calcium current in thalamic neurons. Ann Neurol 1989;25: 582–593.PubMedGoogle Scholar
  73. 73.
    Crunelli V, Leresche N. Block of thalamic T-type Ca2+ channels by ethosuximide is not the whole story. Epilepsy Curr 2002;2: 53–56.PubMedGoogle Scholar
  74. 74.
    Gomora JC, Daud AN, Weiergräber M, Perez-Reyes E. Block of cloned human T-type calcium channels by succinimide antiepileptic drugs. Mol Pharmacol 2001;60: 1121–1132.PubMedGoogle Scholar
  75. 75.
    Kim D, Song I, Keum S, et al. Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking α1g T-type Ca2+ channels. Neuron 2001;31: 35–45.PubMedGoogle Scholar
  76. 76.
    Song I, Kim D, Choi S, Sun M, Kim Y, Shin HS. Role of the α1G T-type calcium channel in spontaneous absence seizures in mutant mice. J Neurosci 2004;24: 5249–5257.PubMedGoogle Scholar
  77. 77.
    Kang MG, Chen CC, Felix R, Letts VA, Frankel WN, Mori Y, Campbell KP. Biochemical and biophysical evidence for γ2 sub-unit association with neuronal voltage-activated Ca2+ channels. J Biol Chem 2001;276: 32917–32924.PubMedGoogle Scholar
  78. 78.
    Chen L, Chetkovich DM, Petralia RS, Sweeney NT, Kawasaki Y, Wenthold RJ, Bredt DS, Nicholl RA. Stargazing regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 2000;408: 936–943.PubMedGoogle Scholar
  79. 79.
    Burgess DL, Biddlecombe GH, McDonough SL, et al. β subunit reshuffling modifies N- and P/Q Ca2+ channel subunit compositions in lethargic mouse brain. Mol Cell Neurosci 1999;13: 293–311.PubMedGoogle Scholar
  80. 80.
    Gao B, Sekido Y, Maximov A, et al. Functional properties of a new voltage-dependent calcium channel α2δ auxiliary subunit gene (CACNA2D2). J Biol Chem 2000;275: 12237–12242.PubMedGoogle Scholar
  81. 81.
    Ivanov SV, Ward JM, Tessarollo L, et al. Cerebellar ataxia, seizures, premature death, and cardiac abnormalities in mice with targeted disruption of theCacna2d2 gene. Am J Pathol 2004;165: 1007–1018.PubMedGoogle Scholar
  82. 82.
    Zhong H, Yokoyama CT, Scheuer T, Catterall WA. Reciprocal regulation of P/Q-type Ca2+ channels by SNAP-25, syntaxin and synaptotagmin. Nat Neurosci 1999;2: 939–941.PubMedGoogle Scholar
  83. 83.
    Zhang Y, Vilaythong AP, Yoshor D, Noebels JL. Elevated thalamic low-voltage-activated currents precede the onset of absence epilepsy in the SNAP25-deficient mouse mutantColoboma. J Neurosci 2004;24: 5239–5248.PubMedGoogle Scholar
  84. 84.
    Imbrici P, Jaffe SL, Eunson LH, Davies NP, Herd C, Robertson R, Kullmann DM, Hanna MG. Dysfunction of the brain calcium channel Cav2.1 in absence epilepsy and episodic ataxia. Brain 2004;127: 2682–2692.PubMedGoogle Scholar
  85. 85.
    Chen Y, Lu J, Pan H. Asociation between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 2003; 54: 239–243.PubMedGoogle Scholar
  86. 86.
    Heron SE, Phillips HA, Mulley JC. Genetic variation of CACNA1H in idiopathic generalized epilepsy. Ann Neurol 2004; 55: 595–596.PubMedGoogle Scholar
  87. 87.
    Peloquin JB, Khosravani H, Barr W, Bladen C, Evans R, Mezeyova J, et al. Functional analysis of Cav3.2 T-type calcium channel mutations linked to childhood absence epilepsy. Epilepsia 2006;47: 655–658.PubMedGoogle Scholar
  88. 88.
    Vitko I, Chen Y, Arias JM, Wu, XR, Perez-Reyes E. Functional characterization and neuronal modeling of the effects of childhood absence epilepsy variants of CACNA1H, a T-type calcium channel. J Neurosci 2005;25: 4844–4855.PubMedGoogle Scholar
  89. 89.
    Zhong X, Liu JR, Kyle JW, Hanck DA, Agnew WS. A profile of alternative RNA splicing and transcript variation ofCACNA1H, a human T-channel gene candidate for idiopathic generalized epilepsies. Hum Mol Genet 2006;15: 1497–1512.PubMedGoogle Scholar
  90. 90.
    Gu W, Sander T, Heils A, Lenzen KP, Steinlein OK. A new EF-hand containing geneEFHC2 on Xp11.4: tentative evidence for association with juvenile myoclonic epilepsy. Epilepsy Res 2005;66: 91–98.PubMedGoogle Scholar
  91. 91.
    Ffrench-Mullen JM, Barker JL, Rogawski MA. Calcium current block by (−)-pentobarbital, phenobarbital, and CHEB but not (+)-pentobarbital in acutely isolated hippocampal CA1 neurons: comparison with effects on GABA-activated Cl current. J Neurosci 1993;13: 3211–3221.PubMedGoogle Scholar
  92. 92.
    Stefani A, Spadoni F, Sinischaldi A, Bemardi G. Lamotrigine inhibits Ca2+ currents in cortical neurons: functional implications. Eur J Pharmacol 1996;307: 113–116.PubMedGoogle Scholar
  93. 93.
    Pisani A, Bonsi P, Martella G, De Persis C, Costa C, Pisani FR, Bemardi G, Calabresi P. Intracellular calcium increase in epileptiform activity: modulation by levetiracetam and lamotrigine. Epilepsia 2004;45: 719–728.PubMedGoogle Scholar
  94. 94.
    Hainsworth AH, McNaughton NCL, Pereverzev A, Schneider T, Randall AD. Actions of sipatrigine, 202W92 and lamotrigine on R-type and T-type Ca2+ channel currents. Eur J Pharmacol 2003; 467: 77–80.PubMedGoogle Scholar
  95. 95.
    Lees G, Leach M. Studies on the mechanism of action of the novel anticonvulsant lamotrigine (Lamictal) using primary neuroglial cultures from rat cortex. Brain Res 1993;612: 190–199.PubMedGoogle Scholar
  96. 96.
    Wang SJ, Huang CC, Hsu KS, Tsai JJ, Gean PW. Presynaptic inhibition of excitatory neurotransmission by lamotrigine in the rat amygdalar neurons. Synapse 1996;24: 248–255.PubMedGoogle Scholar
  97. 97.
    Wang SJ, Huang CC, Hsu KS, Tsai JJ, Gean PW. Inhibition of N-type calcium currents by lamotrigine in rat amygdalar neurones. Neuroreport 1996;7: 3037–3040.PubMedGoogle Scholar
  98. 98.
    Gee NS, Brown JP, Dissanayake VUK, Offord J, Thurlow R, Woodruff GN. The novel anticonvulsant drug, gabapentin (Neurontin) binds to the α2δ2 subunit of a calcium channel. J Biol Chem 1996;271: 5768–5776.PubMedGoogle Scholar
  99. 99.
    Belliotti TR, Capiris T, Ekhato IV, Kinsora JJ, Field MJ, Heffner TG. Structure-activity relationships of pregabalin and analogues that target the α2δ protein. J Med Chem 2005;48: 2294–2307.PubMedGoogle Scholar
  100. 100.
    Fink K, Dooley DJ, Meder WP, Suman-Chauhan N, Duffy S Clusmann H, Gothert M. Inhibition of neuronal Ca2+ influx by gabapentin and pregabalin in the human neocortex. Neuropharmacology 2002;42: 229–236.PubMedGoogle Scholar
  101. 101.
    Sutton KG, Martin DJ, Pinnock RD, Lee K, Scott RH. Gabapentin inhibits high-threshold calcium channel currents in cultured rat dorsal root ganglion neurones. Br J Pharmacol 2002; 135: 257–265.PubMedGoogle Scholar
  102. 102.
    Brown JT, Randall A. Gabapentin fails to alter P/Q-type Ca2+ channel-mediated synaptic transmission in the hippocampus in vitro. Synapse 2005;55: 262–269.PubMedGoogle Scholar
  103. 103.
    Van Hooft JA, Dougherty JJ, Endeman D, Nichols RA, Wadman WJ. Gabapentin inhibits presynaptic Ca2+ influx and synaptic transmission in rat hippocampus and neocortex. Eur J Pharmacol 2002;449: 221–228.PubMedGoogle Scholar
  104. 104.
    Bayer K, Ahmadi S, Zeilhofer HU. Gabapentin may inhibit synaptic transmission in the mouse spinal cord dorsal hom through a preferential block of P/Q-type Ca2+ channels. Neuropharmacology 2004;46: 743–749.PubMedGoogle Scholar
  105. 105.
    Cunningham MO, Woodhall GL, Thompson SE, Dooley DJ, Jones RS. Dual effects of gabapentin and pregabalin on glutamate release at rat entorhinal synapses in vitro. Eur J Neurosci 2004; 20: 1566–1576.PubMedGoogle Scholar
  106. 106.
    Rogawski MA, Löscher W. The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nat Med 2004; 10: 685–692.PubMedGoogle Scholar
  107. 107.
    Li CY, Zhang XL, Matthews EA, Li KW, Kurwa A, Boroujerdi A, Gross J, Gold MS, Dickenson AH, Feng G, Luo ZD. Calcium channel α2.δ1 subunit mediates spinal hyperexcitability in pain modulation. Pain 2006;125: 20–34.PubMedGoogle Scholar
  108. 108.
    Gutman GA, Chandy KG, Grissmer S, et al. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev 2005; 57: 473–508.PubMedGoogle Scholar
  109. 109.
    Rogawski MA. The A-current: how ubiquitous a feature of excitable cells is it? Trends Neurosci 1985;8: 214–219.Google Scholar
  110. 110.
    Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, Wulff H. International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol Rev 2005;57: 463–472.PubMedGoogle Scholar
  111. 111.
    Kubo Y, Adelman JP, Clapham DE, et al. International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels. Pharmacol Rev 2005; 57: 509–526.PubMedGoogle Scholar
  112. 112.
    Goldstein SAN, Bayliss DA, Kim D, Lesage F, Plant LD. Rajan S. International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels. Pharmacol Rev 2005;57: 527–540.PubMedGoogle Scholar
  113. 113.
    Isom LL, De Jongh KS, Catterall WA. Auxiliary subunits of voltage-gated ion channels. Neuron 1994;12: 1183–1194.PubMedGoogle Scholar
  114. 114.
    Smart SL, Lopantsev V, Zhang CL, et al. Deletion of the Kv1.1 potassium channel causes epilepsy in mice. Neuron 1998;20: 809–819.PubMedGoogle Scholar
  115. 115.
    Zuberi SM, Eunson LH, Spauschus A, et al. A novel mutation in the human voltage-gated potassium channel gene (Kvl. 1) associates with episodic ataxia type 1 and sometimes with partial epilepsy. Brain 1999;122: 817–825.PubMedGoogle Scholar
  116. 116.
    Heilstedt HA, Burgess DL, Anderson AE, et al. Loss of the potassium channel β-subunit gene,KCNAB2, is associated with epilepsy in patients with 1p36 deletion syndrome. Epilepsia 2001; 42: 1103–1111.PubMedGoogle Scholar
  117. 117.
    Rogawski MA. KCNQ2/KCNQ3 K+ channels and the molecular pathogenesis of epilepsy: implications for therapy. Trends Neurosci 2000;23: 393–398.PubMedGoogle Scholar
  118. 118.
    Biervert C, Schroeder BC, Kubisch C, et al. A potassium channel mutation in neonatal human epilepsy. Science 1998;279: 403–406.PubMedGoogle Scholar
  119. 119.
    Singh NA, Charlier C, Stauffer D, et al. A novel potassium channel gene,KCNQ2, is mutated in an inherited epilepsy of newboms. Nat Genet 1998;18: 25–29.PubMedGoogle Scholar
  120. 120.
    Watanabe H, Nagata E, Kosakai A, et al. Disruption of the epilepsyKCNQ2 gene results in neural hyperexcitability. J Neurochem 2000;75: 28–33.PubMedGoogle Scholar
  121. 121.
    Brown DA, Adams PR. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 1980; 283: 673–676.PubMedGoogle Scholar
  122. 122.
    Schwarz JR, Glassmeier G, Cooper E, et al. KCNQ channels mediate IKs, a slow K+ current regulating excitability in the node of Ranvier. J Physiol 2006;573(Pt l): 17–34.PubMedGoogle Scholar
  123. 123.
    Du W, Bautista IF, Yang H, et al. Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet 2005;37: 733–738.PubMedGoogle Scholar
  124. 124.
    Lappin SC, Dale TJ, Brown JT, Tresize DJ, Davies CH. Activation of SK channels inhibits epileptiform bursting in hippocampal CA3 neurons. Brain Res 2005;1065: 37–46.PubMedGoogle Scholar
  125. 125.
    Garduno J, Galvan E, Fernandez de Sevilla D, Buno W. 1-Ethyl-2-benzimidazolinone (EBIO) suppresses epileptiform activity in in vitro hippocampus. Neuropharmacology 2005;49: 376–388.PubMedGoogle Scholar
  126. 126.
    Chioza B, Osei-Lah A, Wilkie H, et al. Suggestive evidence for association of two potassium channel genes with different idiopathic generalised epilepsy syndromes. Epilepsy Res 2002;52: 127.Google Scholar
  127. 127.
    Slesinger PA, Patil N, Liao YJ, Jan YN, Cox DR. Functional effects of the mouseweaver mutation on G protein-gated inwardly rectifying K+ channels. Neuron 1996;16: 321–331.PubMedGoogle Scholar
  128. 128.
    Signorini S, Liao YJ, Duncan SA, Jan LY, Stoffel M. Normal cerebellar development but susceptibility to seizures in mice lacking G protein-coupled inwardly rectifying K+ channel GIRK2. Proc Natl Acad Sci U S A 1997;94: 923–927.PubMedGoogle Scholar
  129. 129.
    Ferraro TN, Golden GT, Smith GG, et al. Fine mapping of a seizure susceptibility locus on mouse chromosome 1: nomination ofKcnj10 as a causative gene. Mamm Genome 2004;15: 239–251.PubMedGoogle Scholar
  130. 130.
    Buono RJ, Lohoff FW, Sander T, et al. Association between variation in the humanKCNJ10 potassium ion channel gene and seizure susceptibility. Epilepsy Res 2004;58: 175–183.PubMedGoogle Scholar
  131. 131.
    Holter J, Carter D, Leresche N, Crunelli V, Vincent P. A TASK3 channel (KCNK9) mutation in a genetic model of absence epilepsy. J Mol Neurosci 2005;25: 37–51.PubMedGoogle Scholar
  132. 132.
    Perreault P, Avoli M. Physiology and pharmacology of epileptiform activity induced by 4-aminopyridine in rat hippocampal slices. J Neurophysiol 1991;65: 771–785.PubMedGoogle Scholar
  133. 133.
    Gasparini S, Gilquin B, Menez A. Comparison of sea anemone and scorpion toxins binding to Kvl channels: an example of convergent evolution. Toxicon 2004;43: 901–908.PubMedGoogle Scholar
  134. 134.
    Gilquin B, Braud S, Eriksson MA, et al. A variable residue in the pore of Kvl channels is critical for the high affinity of blockers from sea anemones and scorpions. J Biol Chem 2005;280: 27093–27102.PubMedGoogle Scholar
  135. 135.
    Bagetta G, Nistico G, Dolly JO. Production of seizures and brain damage in rats by a-dendrotoxin, a selective K+ channel blocker. Neurosci Lett 1992;139: 34–40.PubMedGoogle Scholar
  136. 136.
    Coleman MH, Yamaguchi S, Rogawski MA. Protection against dendrotoxin-induced clonic seizures in mice by anticonvulsant drugs. Brain Res 1992;575: 138–142.PubMedGoogle Scholar
  137. 137.
    Werkman TR, Gustafson TA, Rogowski RS, Blaustein MP, Rogawski MA. Tityustoxin-Ka, a structurally novel and highly potent K+ channel peptide toxin, interacts with the α-dendrotoxin binding site on the cloned Kvl.2 K+ channel. Mol Pharmacol 1993;44: 430–436.PubMedGoogle Scholar
  138. 138.
    Wickenden AD. Potassium channels as anti-epileptic drug targets. Neuropharmacology 2002;43: 1055–1060.PubMedGoogle Scholar
  139. 139.
    Alzheimer C, ten Bruggencate G. Actions of BRL 34915 (Cromakalim) upon convulsive discharges in guinea pig hippocampal slices. Naunyn Schmiedebergs Arch Pharmacol 1988;337: 429–434.PubMedGoogle Scholar
  140. 140.
    Gandolfo G, Gottesmann C, Bidard JN, Lazdunski M. K+ channels openers prevent epilepsy induced by the bee venom peptide MCD. Eur J Pharmacol 1989;159: 329–330.PubMedGoogle Scholar
  141. 141.
    Gandolfo G, Romettino S, Gottesmann C, et al. K+ channel openers decrease seizures in genetically epileptic rats. Eur J Pharmacol 1989;167: 181–183.PubMedGoogle Scholar
  142. 142.
    Mattia D, Nagao T, Rogawski MA, Avoli M. Potassium channel activators counteract anoxic hyperexcitability but not 4-aminopyridine-induced epileptiform activity in the rat hippocampal slice. Neuropharmacology 1994;33: 1515–1522.PubMedGoogle Scholar
  143. 143.
    Yamada K, Ji JJ, Yuan H, et al. Protective role of ATP-sensitive potassium channels in hypoxia-induced generalized seizure. Science 2001;292: 1543–1546.PubMedGoogle Scholar
  144. 144.
    Wua YJ, Dworetzky SI. Recent developments on KCNQ potassium channel openers. Curr Med Chem 2005;12: 453–460.PubMedGoogle Scholar
  145. 145.
    Rostock A, Tober C, Rundfeldt C, et al. D-23129: a new anticonvulsant with broad spectrum activity in animal models of epileptic seizures. Epilepsy Res 1996;23: 211–223.PubMedGoogle Scholar
  146. 146.
    Otto JF, Kimball MM, Wilcox KS. Effects of the anticonvulsant retigabine on cultured cortical neurons: changes in electroresponsive properties and synaptic transmission. Mol Pharmacol 2002; 61: 921–927.PubMedGoogle Scholar
  147. 147.
    Rundfeldt C. The new anticonvulsant retigabine (D-23129) acts as an opener of K+ channels in neuronal cells. Eur J Pharmacol 1997;336: 243–249.PubMedGoogle Scholar
  148. 148.
    Rundfeldt C, Netzer R. The novel anticonvulsant retigabine activates M-currents in Chinese hamster ovary-cells transfected with human KCNQ2/3 subunits. Neurosci Lett 2000;282: 73–76.PubMedGoogle Scholar
  149. 149.
    Main JM, Cryan JE, Dupere JR, Cox B, Clare JJ, Burbridge SA. Modulation of KCNQ2/3 potassium channels by the novel anticonvulsant retigabine. Mol Pharmacol 2000;58;253–262.PubMedGoogle Scholar
  150. 150.
    Wickenden AD, Yu W, Zou A, Jegla T, Wagoner PK. Retigabine, a novel anticonvulsant, enhances activation of KCNQ2/Q3 potassium channels. Mol Pharmacol 2000;58: 591–600.PubMedGoogle Scholar
  151. 151.
    Tatulian L, Delmas P, Abogadie FC, Brown DA. Activation of expressed KCNQ potassium currents and native neuronal M-type potassium currents by the anti-convulsant drug retigabine. J Neurosci 2001;21: 5535–5545.PubMedGoogle Scholar
  152. 152.
    Wuttke TV, Seebohm G, Bail S, Maljevic S, Lerche H. The new anticonvulsant retigabine favors voltage-dependent opening of the Kv7.2 (KCNQ2) channel by binding to its activation gate. Mol Pharmacol 2005;67: 1009–1017.PubMedGoogle Scholar
  153. 153.
    Schenzer A, Friedrich T, Pusch M, et al. Molecular determinants of KCNQ (Kv7) K+ channel sensitivity to the anticonvulsant retigabine. J Neurosci 2005;25: 5051–5060.PubMedGoogle Scholar
  154. 154.
    Leresche N, Parri HR, Erdemli G, et al. On the action of the anti-absence drug ethosuximide in the rat and cat thalamus. J Neurosci 1998;18: 4842–4853.PubMedGoogle Scholar
  155. 155.
    Huang CW, Huang CC, Wu SN. The opening effect of pregabalin on ATP-sensitive potassium channels in differentiated hippocampal neuron-derived H19-7 cells. Epilepsia 2006;47: 720–726.PubMedGoogle Scholar
  156. 156.
    Huang CW, Huang CC, Wu SN. Inhibitory effect of lamotrigine on A-type potassium current in hippocampal neuron-derived H19-7 cells. Epilepsia 2004;45: 729–736.PubMedGoogle Scholar
  157. 157.
    Madeja M, Margineanu DG, Gorji A, et al. Reduction of voltage operated potassium currents by levetiracetam: a novel antiepileptic mechanism of action? Neuropharmacology 2003;45: 661–671.PubMedGoogle Scholar
  158. 158.
    Danielsson BR, Lansdell K, Patmore L, Tomson T. Effects of the antiepileptic drugs lamotrigine, topiramate and gabapentin on hERG potassium currents. Epilepsy Res 2005;63: 17–25.PubMedGoogle Scholar
  159. 159.
    Pedley TA, Hauser WA. Sudden death in epilepsy: a wake-up call for management. Lancet 2002;359: 1790–1791.PubMedGoogle Scholar
  160. 160.
    Otto JF, Yang Y, Frankel WN, White HS, Wilcox KS. A spontaneous mutation involvingKcnq2 (Kv7.2) reduces M-current density and spike frequency adaptation in mouse CA1 neurons. J Neurosci 2006;26: 2053–2059.PubMedGoogle Scholar
  161. 161.
    Otto JF, Yang Y, Frankel WN, Wilcox KS, White HS. Mice carrying theSztI mutation exhibit increased seizure susceptibility and altered sensitivity to compounds acting at the M-channel. Epilepsia 2004;45: 1009–1016.PubMedGoogle Scholar
  162. 162.
    Poolos NP. The h-channel: a potential channelopathy in epilepsy? Epilepsy Behav 2005;7: 51–56.PubMedGoogle Scholar
  163. 163.
    Ludwig A, Budde T, Stieber J, et al. Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2. EMBO J 2003;22: 216–224.PubMedGoogle Scholar
  164. 164.
    Strauss U, Kole MH, Bräuer AU, et al. An impaired neocortical Ih is associated with enhanced excitability and absence epilepsy. Eur J Neurosci 2004;19: 3048–3058.PubMedGoogle Scholar
  165. 165.
    Budde T, Caputi L, Kanyshkova T, et al. Impaired regulation of thalamic pacemaker channels through an imbalance of subunit expression in absence epilepsy. J Neurosci 2005;25: 9871–9882.PubMedGoogle Scholar
  166. 166.
    Chen K, Aradi, I, Thon N, Eghbal-Ahmadi M, Baram TZ, Soltesz I. Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyper-excitability. Nat Med 2001;7: 331–337.PubMedGoogle Scholar
  167. 167.
    Brewster A, Bender RA, Chen Y, Dube C, Eghbal-Ahmadi M, Baram TZ. Developmental febrile seizures modulate hippocampal gene expression of hyperpolarization-activated channels in an isoform- and cell-specific manner. J Neurosci 2002;22: 4591–4599.PubMedGoogle Scholar
  168. 168.
    Shah MM, Anderson AE, Leung V, Lin X, Johnston D. Scizure-induced plasticity of h channels in entorhinal cortical layer III pyramidal neurons. Neuron 2004;44: 495–508.PubMedGoogle Scholar
  169. 169.
    Arias RL, Bowlby MR. Pharmacological characterization of antiepileptic drugs and experimental analgesics on low magnesium-induced hyperexcitability in rat hippocampal slices. Brain Res 2005;1047: 233–244.PubMedGoogle Scholar
  170. 170.
    Poolos NP, Migliore M, Johnston D. Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nat Neurosci 2002;5: 767–774.PubMedGoogle Scholar
  171. 171.
    Jentsch TJ, Neagoe I, Scheel O. CLC chloride channels and transporters. Curr Opin Neurobiol 2005;15: 319–325.PubMedGoogle Scholar
  172. 172.
    Bösl MR, Stein V, Hubner C, et al. Male germ cells and photo-receptors, both dependent on close cell-cell interactions, degenerate upon C1C-2 Cl channel disruption. EMBO J 2001;20: 1289–1299.PubMedGoogle Scholar
  173. 173.
    Heils A.CLCN2 and idiopathic generalized epilepsy. Adv Neurol 2005;95: 265–271.PubMedGoogle Scholar
  174. 174.
    Niemeyer MI, Yusef YR, Comejo I, Flores CA, Sepulveda FV, Cid LP. Functional evaluation of human C1C-2 chloride channel mutations associated with idiopathic generalized epilepsies. Physiol Genomics 2004;19: 74–83.PubMedGoogle Scholar
  175. 175.
    Woo NS, Lu J, England R, et al. Hyperexcitability and epilepsy associated with disruption of the mouse neuronal-specific K-Cl cotransporter gene. Hippocampus 2002;12: 258–268.PubMedGoogle Scholar
  176. 176.
    Tomberg J, Voikar V, Savilahti H, Rauvala H, Airaksinen MS. Behavioural phenotypes of hypomorphic KCC2-deficient mice. Eur J Neurosci 2005;21: 1327–1337.Google Scholar
  177. 177.
    Somogyi P, Klausberger T. Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol 2005;562: 9–26.PubMedGoogle Scholar
  178. 178.
    Barnard EA. The molecular architecture of GABAA receptors. In: Möhler H, ed. Pharmacology of GABA and glycine neurotransmission. Handbook of Experimental Pharmacology 150. Berlin: Springer, 2001: 94–100.Google Scholar
  179. 179.
    Johnston GAR. GABAA receptor channel pharmacology. Current Pharm Des 2005;11: 1867–1885.Google Scholar
  180. 180.
    Rudolph U, Möhler H. Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Annu Rev Pharmacol Toxicol 2004;44: 475–498.PubMedGoogle Scholar
  181. 181.
    Farrant M, Nusser Z. Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors. Nat Rev Neurosci 2005;6: 215–229.PubMedGoogle Scholar
  182. 182.
    Nusser Z, Sieghart W, Somogyi P. Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J Neurosci 1998;18: 1693–1703.PubMedGoogle Scholar
  183. 183.
    Macdonald RL, Gallagher MJ, Feng HJ, Kong J. GABAA receptor epilepsy mutations. Biochem Pharmacol 2004;68: 1497–1506.PubMedGoogle Scholar
  184. 184.
    Cossette P, Liu L, Brisebois K, et al. Mutation ofGABARA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet 2002;31: 184–189.PubMedGoogle Scholar
  185. 185.
    Dibbens LM, Feng HJ, Richards MC, et al. GABRD encoding a protein for extra- or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. Hum Mol Genet 2004; 13: 1315–1319.PubMedGoogle Scholar
  186. 186.
    DeLorey TM, Handforth A, Anagnostaras SG, et al. Mice lacking the β3 subunit of the GABAA receptor have the epilepsy phenotype and many of the behavioural characteristics of Angelman syndrome. J Neurosci 1998;18: 8505–8514.PubMedGoogle Scholar
  187. 187.
    Rudolph U, Möhler H. GABA-based therapeutic approaches: GABAA receptor subtype functions. Curr Opin Pharmacol 2006; 6: 18–23.PubMedGoogle Scholar
  188. 188.
    Spigelman I, Li Z, Banerjee PK, Mihalek RM, Homanics GE, Olsen RW. Behavior and physiology of mice lacking the GABAA-receptor δ subunit. Epilepsia 2002: 43(suppl 5): 3–8.PubMedGoogle Scholar
  189. 189.
    Vicini S, Losi G, Homanics GE. GABAA receptor S subunit deletion prevents neurosteroid modulation of inhibitory synaptic currents in cerebellar neurons. Neuropharmacology 2002;43: 646–650.PubMedGoogle Scholar
  190. 190.
    Mihalek RM, Banerjee PK, Korpi ER, et al. Attenuated sensitivity to neuroactive steroids in γ-aminobutyrate type A receptor delta subunit knockout mice. Proc Natl Acad Sci U S A 1999;96: 12905–12910.PubMedGoogle Scholar
  191. 191.
    Brown N, Kerby J, Bonnert TP, Whiting PJ, Wafford KA. Pharmacological characterization of a novel cell line expressing human α4β3δ GABAA receptors. Br J Pharmacol 2002;136: 965–974.PubMedGoogle Scholar
  192. 192.
    Iadarola MJ, Gale K. Substantia nigra: site of anticonvulsant activity mediated by γ-aminobutyric acid. Science 1982;218: 1237–1240.PubMedGoogle Scholar
  193. 193.
    Mirski MA, Ferrendelli JA. Anterior thalamic mediation of generalized pentylenetetrazol seizures. Brain Res 1986;399: 212–223.PubMedGoogle Scholar
  194. 194.
    Patel S, Millan MH, Meldrum BS. Decrease in excitatory transmission within the lateral habenula and the mediodorsal thalamus protects against limbic seizures in rats. Exp Neurol 1988;101: 63–74.PubMedGoogle Scholar
  195. 195.
    Meldrum B. GABAergic agents as anticonvulsants in baboons with photosensitive epilepsy. Neurosci Lett 1984;47: 345–349.PubMedGoogle Scholar
  196. 196.
    Garant DS, Xu SG, Sperber EF, Moshe SL. Age-related differences in the effects of GABAA agonists microinjected into rat substantia nigra: pro- and anticonvulsant actions. Epilepsia 1995; 36: 960–965.PubMedGoogle Scholar
  197. 197.
    Wafford KA, Bain CJ, Quirk K, et al. A novel allosteric site on the GABAA receptor β subunit. Neuron 1994;12: 775–782.PubMedGoogle Scholar
  198. 198.
    Groves JO, Guscott MR, Hallett DJ, et al. The role of GABAβ2 subunit-containing receptors in mediating the anticonvulsant and sedative effects of loreclezole. Eur J Neurosci 2006;24: 167–174.PubMedGoogle Scholar
  199. 199.
    Atack JR, Wafford K, Tye SJ, et al. TPA023, an agonist selective for α2- and α3-containing GABAA receptors is a non-sedating anxiolytic in rodents and primates. J Pharmacol Exp Ther 2006; 316: 410–422.PubMedGoogle Scholar
  200. 200.
    Langen B, Egerland U, Bemoster K, Dost R, Unverferth K, Rundfeldt C. Characterization in rats of the anxiolytic potential of ELB139 [l-(4-chlorophenyl)-4-piperidin-l-yl-l,5-dihydro-imidazol-2-on], a new agonist at the benzodiazepine binding site of the GABAA receptor. J Pharmacol Exp Ther 2005;314: 717–724.PubMedGoogle Scholar
  201. 201.
    Turski L, Stephens DN, Jensen LH, et al. Anticonvulsant action of the β-carboline abecarnil: studies in rodents and baboon,Papio papio. J Pharmacol Exp Ther 1990;253: 344–352.PubMedGoogle Scholar
  202. 202.
    Natolino F, Zanotti A, Contarino A, Lipartiti M, Giusti P. Abecamil, a β-carboline derivative, does not exhibit anticonvulsant tolerance or withdrawal effects in mice. Naunyn Schmiedebergs Arch Pharmacol 1996;354: 612–617.PubMedGoogle Scholar
  203. 203.
    Wafford KA. GABAA receptor subtypes: any clues to the mechanism of benzodiazepine dependence? Curr Opin Pharmacol 2005;5: 47–52.PubMedGoogle Scholar
  204. 204.
    Whiting PJ. The GABAA receptor gene family: new opportunities for drug development. Curr Opin Drug Discov Devel 2003;6: 648–657.PubMedGoogle Scholar
  205. 205.
    Wohlfarth KM, Bianchi MT, Macdonald RL. Enhanced neurosteroid potentiation of ternary GABAA receptors containing the δ subunit. J Neurosci 2002;22: 1541–1549.PubMedGoogle Scholar
  206. 206.
    Stell BM, Brickley SG, Tang CY, Fan-ant M, Mody I. Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by S subunit-containing GABAA receptors. Proc Natl Acad Sci U S A 2003;100: 14439–14444.PubMedGoogle Scholar
  207. 207.
    Reddy DS, Rogawski MA. Chronic treatment with the neuroactive steroid ganaxolone in the rat induces anticonvulsant tolerance to diazepam but not to itself. J Pharmacol Exp Ther 2000;295: 1241–1248.PubMedGoogle Scholar
  208. 208.
    Monaghan EP, McAuley JW, Data JL. Ganaxolone: a novel positive allosteric modulator of the GABAA receptor complex for the treatment of epilepsy. Expert Opin Investig Drugs 1999;8: 1663–1671.PubMedGoogle Scholar
  209. 209.
    Reddy DS, Rogawski MA. Enhanced anticonvulsant activity of ganaxolone after neurosteroid withdrawal in a rat model of catamenial epilepsy. J Pharmacol Exp Ther 2000;294: 909–915.PubMedGoogle Scholar
  210. 210.
    Dajas-Bailador F, Wonnacott S. Nicotinic acetylcholine receptors and the regulation of neuronal signaling. Trends Pharmacol Sci 2004;25: 317–324.PubMedGoogle Scholar
  211. 211.
    Scheffer IE, Bhatia KP, Lopes-Cendes I, et al. Autosomal dominant nocturnal frontal lobe epilepsy: a distinctive clinical disorder. Brain 1995; 118: 61–73.PubMedGoogle Scholar
  212. 212.
    Steinlein OK, Mulley JC, Propping P, et al. A missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet 1995;11: 201–203.PubMedGoogle Scholar
  213. 213.
    De Fusco MD, Becchetti A, Patrignani A, et al. The nicotinic receptor β2 subunit is mutant in nocturnal frontal lobe epilepsy. Nat Genet 2000;26: 275–276.PubMedGoogle Scholar
  214. 214.
    Oldani A, Zucconi M, Asselta R, et al. Autosomal dominant nocturnal frontal lobe epilepsy: a video-polysomnographic and genetic appraisal of 40 patients and delineation of the epileptic syndrome. Brain 1998;121(Pt 2): 205–223.PubMedGoogle Scholar
  215. 215.
    Rodrigues-Pinguet NO, Pinguet TJ, Figl A, Lester HA, Cohen BN. Mutations linked to autosomal dominant nocturnal frontal lobe epilepsy affect allosteric Ca2+ activation of the α4β2 nicotinic acetylcholine receptor. Mol Pharmacol 2005;68: 487–501.PubMedGoogle Scholar
  216. 216.
    Picard F, Bertrand S, Steinlein OK, Bertrand D. Mutated nicotinic receptors responsible for autosomal dominant nocturnal frontal lobe epilepsy are more sensitive to carbamazepine. Epilepsia 1999;40: 1189–1209.Google Scholar
  217. 217.
    Lynch JW. Molecular structure and function of the glycine receptor chloride channel. Physiol Rev 2003;84: 1051–1095.Google Scholar
  218. 218.
    Bowery NG, Smart TG. GABA and glycine as neurotransmitters: a brief history. Br J Pharmacol 2006;147: S109-S119.PubMedGoogle Scholar
  219. 219.
    Ghavanini AA, Mathers DA, Kim HS, Puil E. Distinctive glycinergic currents with fast and slow kinetics in thalamus. J Neurophysiol 2005;95: 3438–3448.Google Scholar
  220. 220.
    Krasowski MD, Harrison NL. The actions of ether, alcohol and alkane general anaesthetics on GABAA and glycine receptors and the effects of TM2 and TM3 mutations. Br J Pharmacol 2000; 129: 731–743.PubMedGoogle Scholar
  221. 221.
    Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol Rev 1999;51: 7–61.PubMedGoogle Scholar
  222. 222.
    Mayer ML, Armstrong N. Structure and function of glutamate receptor ion channels. Annu Rev Physiol 2004;66: 161–181.PubMedGoogle Scholar
  223. 223.
    Kew JNC, Kemp JA. Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology (Berl) 2005; 179: 4–29 [Erratum in: Psychopharmacology (Berl) 2005;182:320].Google Scholar
  224. 224.
    Mothet JP, Parent AT, Wolosker H, et al. D-Serine is an endogenous ligand for the glycine site of the N-methyl-d-aspartate receptor. Proc Natl Acad Sci U S A 2000;97: 4926–4931.PubMedGoogle Scholar
  225. 225.
    Supplisson S, Bergman C. Control of NMDA receptor activation by a glycine transporter co-expressed inXenopus oocytes. J Neurosci 1997;17: 4580–4590.PubMedGoogle Scholar
  226. 226.
    Martineau M, Baux G, Mothet JP. Gliotransmission at central glutamatergic synapses: D-serine on stage. J Physiol (Paris) 2006;99: 103–110.Google Scholar
  227. 227.
    Mayer ML. Glutamate receptors at atomic resolution. Nature 2006;440: 456–462.PubMedGoogle Scholar
  228. 228.
    Madden DR. The structure and function of glutamate receptor ion channels. Nat Rev Neurosci 2002;3: 91–101.PubMedGoogle Scholar
  229. 229.
    Mayer ML, Ghosal A, Dolman NP, Jane DE. Crystal structure of the kainate receptor GluR5 ligand binding core dimer with novel GluR5-selective antagonists. J Neurosci 2006;26: 2852–2861.PubMedGoogle Scholar
  230. 230.
    Feng B, Tse HW, Skifter DA, Morley R, Jane DE, Monaghan DT. Structure-activity analysis of a novel NR2C/NR2D-preferring NMDA receptor antagonist: l-(phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid. Br J Pharmacol 2004;141: 508–516.PubMedGoogle Scholar
  231. 231.
    Dürmüller N, Craggs M, Meldrum BS. The effect of the non-NMDA receptor antagonist GYKI 52466 and NBQX and the competitive NMDA receptor antagonist D-CPPene on the development of amygdala kindling and on amygdala-kindled seizures. Epilepsy Res 1994;17: 167–174.PubMedGoogle Scholar
  232. 232.
    Rogawski MA, Kurzman PS, Yamaguchi SI, Li H. Role of AMPA and GluR5 kainate receptors in the development and expression of amygdala kindling in the mouse. Neuropharmacology 2001;40: 28–35.PubMedGoogle Scholar
  233. 233.
    Nissinen JPT, Rønn LCB, Mathiesen C, Møller A, Pitkänen A. AMPA antagonist, NS1209, efficiently stops status epilepticus and thereby inhibits epileptogenesis in rats. Presented at Medicon Valley BioConference 2002, Oct. 8–10, 2002, Malmö, Sweden. Available at: http://www.mva.org/media(466,1033)/Abstracts_ Posters_BioConference_2002.pdf. Abstract.Google Scholar
  234. 234.
    Sander T, Hildmann T, Kretz R, et al. Allelic association of juvenile absence epilepsy with a GluR5 kainate receptor gene (GRIK1) polymorphism. Am J Med Genet 1997;74: 416–421.PubMedGoogle Scholar
  235. 235.
    Izzi C, Barbon A, Kretz R, Sander T, Barlati S. Sequencing of theGRIK1 gene in patients with juvenile absence epilepsy does not reveal mutations affecting receptor structure. Am J Med Genet 2002;114: 354–359.PubMedGoogle Scholar
  236. 236.
    Brusa R, Zimmerman F, Koh DS, et al. Early-onset epilepsy and post-natal lethality associated with an editing-deficient GluR-B allele in mice. Science 1995;270: 1677–1680.PubMedGoogle Scholar
  237. 237.
    Krestel HE, Shimshek DR, Jensen V, et al. A genetic switch for epilepsy in adult mice. J Neurosci 2004;24: 10568–10578.PubMedGoogle Scholar
  238. 238.
    Kortenbruck G, Berger E, Speckmann E-J, Musshoff U. RNA editing at the Q/R site for the glutamate receptor subunits GLUR2, GLUR5, and GLUR6 in hippocampus and temporal cortex from epileptic patients. Neurobiol Dis 2001;8: 459–468.PubMedGoogle Scholar
  239. 239.
    Watkins JC, Evans DE. The glutamate story. Br J Pharmacol 2006;147: S100-S108.PubMedGoogle Scholar
  240. 240.
    Croucher MJ, Collins JF, Meldrum BS. Anticonvulsant action of excitatory amino acid antagonists. Science 1982;216: 899–901.PubMedGoogle Scholar
  241. 241.
    Meldrum BS. Excitatory amino acids in epilepsy and potential novel therapies. Epilepsy Res 1992;12: 189–196.PubMedGoogle Scholar
  242. 242.
    Löscher W, Hönack D. Anticonvulsant and behavioral effects of two novel competitive N-methyl-d-aspartic acid receptor antagonists, CGP37849 and CGP 39551, in the kindling model of epilepsy: comparison with MK-801 and carbamazepine. J Pharmacol Exp Ther 1991;256: 432–440.PubMedGoogle Scholar
  243. 243.
    Sveinbjornsdottir S, Sander JWAS, Upton D, et al. The excitatory amino acid antagonistd-CPPene (SDZ EAA-494) in patients with epilepsy. Epilepsy Res 1993;16: 165–174.PubMedGoogle Scholar
  244. 244.
    Fix AS, Horn JW, Wightman KA, et al. Neuronal vacuolization and necrosis induced by the noncompetitive N-methyl-d-aspartate (NMDA) antagonist MK(+)801 (dizocilpine maleate): a light and electron microscopic evaluation of the rat retrosplenial cortex. Exp Neurol 1993;123: 204–215.PubMedGoogle Scholar
  245. 245.
    Rogawski MA. Therapeutic potential of excitatory amino acid antagonists: channel blockers and 2,3-benzodiazepines. Trends Pharmacol Sci 1993;14: 3232–331.Google Scholar
  246. 246.
    Rogawski MA. Low affinity channel blocking (uncompetitive) NMDA receptor antagonists as therapeutic agents—toward an understanding of their favorable tolerability. Amino Acids 2000; 19: 133–149.PubMedGoogle Scholar
  247. 247.
    Subramaniam S, Donevan SD, Rogawski MA. Block of the N-methyl-d-aspartate receptor by remacemide and its des-glycine metabolite. J Pharmacol Exp Ther 1996;276: 161–168.PubMedGoogle Scholar
  248. 248.
    Sun L, Lin SS. The anticonvulsant SGB-017 (ADCI) blocks voltage-gated sodium channels in rat and human neurons: comparison with carbamazepine. Epilepsia 2000;41: 263–270.PubMedGoogle Scholar
  249. 249.
    Turski L, Meldrum BS, Turski WA, Watkins JC. Evidence that antagonism at non-NMDA receptors results in anticonvulsant action. Eur J Pharmacol 1987;136: 69–73.PubMedGoogle Scholar
  250. 250.
    Chapman AG, Smith SE, Meldrum BS. The anticonvulsant effect of the non-NMDA antagonists, NBQX and GYKI 52466 in mice. Epilepsy Res 1991;9: 92–96.PubMedGoogle Scholar
  251. 251.
    Meldrum BS, Craggs MD, Dürmüller N, Smith SE, Chapman AG. The effects of AMPA receptor antagonists in kindled seizures and on reflex epilepsy in rodents and primates. Epilepsy Res 1992;9: S307-S311.Google Scholar
  252. 252.
    Yamaguchi S, Donevan SD, Rogawski MA. Anticonvulsant activity of AMPA/kainate antagonists: comparison of GYKI 52466 and NBOX in maximal electroshock and chemoconvulsant seizure models. Epilepsy Res 1993;15: 179–184.PubMedGoogle Scholar
  253. 253.
    Löscher W, Hönack D. Effects of the non-NMDA antagonists NBQX and the 2,3-benzodiazepine GYKI 52466 on different seizure types in mice: comparison with diazepam and interactions with flumazenil. Br J Pharmacol 1994;113: 1349–1357.PubMedGoogle Scholar
  254. 254.
    Rutecki PA, Sayin U, Yang Y, Hadar E. Determinants of ictal epileptiform patterns in the hippocampal slice. Epilepsia 2002; 43(suppl 5): 179–183.PubMedGoogle Scholar
  255. 255.
    Kasper C, Pickering DS, Mirza O, et al. The structure of a mixed GluR2 ligand-binding core dimer in complex with (S)-glutamate and the antagonist (S)-NS1209. J Mol Biol 2006;357: 1184–1201.PubMedGoogle Scholar
  256. 256.
    Donevan SD, Rogawski MA. GYKI 52466, a 2,3-benzodiazepine, is a highly selective, noncompetitive antagonist of AMPA/kainate receptor responses. Neuron 1993;10: 51–59.PubMedGoogle Scholar
  257. 257.
    Donevan SD, Yamaguchi S, Rogawski MA. Non-N-methyl-d-aspartate receptor antagonism by 3-N-substituted 2,3-benzodiazepines: relationship to anticonvulsant activity. J Pharmacol Exp Ther 1994;271: 25–29.PubMedGoogle Scholar
  258. 258.
    Solyom S, Tamawa I. Non-competitive AMPA antagonists of 2,3-benzodiazepine type. Curr Pharm Des 2002;8: 913–939.PubMedGoogle Scholar
  259. 259.
    Kaminski RM, Van Rijn CM, Turski WA, Czuczwar SJ, Van Luijtelaar G. AMPA and GABAB receptor antagonists and their interaction in rats with a genetic form of absence epilepsy. Eur J Pharmacol 2001;430: 251–259.PubMedGoogle Scholar
  260. 260.
    Jakus R, Graf M, Ando RD, et al. Effect of two noncompetitive AMPA receptor antagonists GYKI 52466 and GYKI 53405 on vigilance, behavior and spike-wave discharges in a genetic rat model of absence epilepsy. Brain Res 2004;1008: 236–244.PubMedGoogle Scholar
  261. 261.
    Balannik V, Menniti FS, Patemain AV, Lerma J, Stem-Bach Y. Molecular mechanism of AMPA receptor noncompetitive antagonism. Neuron 2005;48: 279–288.PubMedGoogle Scholar
  262. 262.
    Chappell AS, Sander JW, Brodie MJ, et al. A crossover, add-on trial of talampanel in patients with refractory partial seizures. Neurology 2002;58: 1680–1682.PubMedGoogle Scholar
  263. 263.
    Langan YM, Lucas R, Jewell H, et al. Talampanel, a new anti-epileptic drug: single- and multiple-dose pharmacokinetics and initial 1-week experience in patients with chronic intractable epilepsy. Epilepsia 2003;44: 46–53.PubMedGoogle Scholar
  264. 264.
    Ko GY, Brown-Croyts LM, Teyler TJ. The effects of anticonvulsant drugs on NMDA-EPSP, AMPA-EPSP and GABA-IPSP in the rat hippocampus. Brain Res Bull 1997;42: 297–302.PubMedGoogle Scholar
  265. 265.
    Kamiya Y, Andoh T, Furuya R, et al. Comparison of the effects of convulsant and depressant barbiturate stereoisomers on AMPA-type glutamate receptors. Anesthesiology 1999;90: 1704–1713.PubMedGoogle Scholar
  266. 266.
    Gibbs JW 3rd, Sombati S, DeLorenzo RJ, Coulter DA. Cellular actions of topiramate: blockade of kainate-evoked inward currents in cultured hippocampal neurons. Epilepsia 2000;41(suppl l): S10-S16.PubMedGoogle Scholar
  267. 267.
    Rogawski MA, Gryder D, Castaneda D, Yonekawa W, Banks MK, Li H. GluR5 kainate receptors, seizures and the amygdala. Ann N Y Acad Sci 2003;985: 150–162.PubMedGoogle Scholar
  268. 268.
    Gryder DS, Rogawski MA. Selective antagonism of GluR5 kainate-receptor-mediated synaptic currents by topiramate in rat basolateral amygdala neurons. J Neurosci 2003;23: 7069–7074.PubMedGoogle Scholar
  269. 269.
    Kaminski RM, Banerjee M, Rogawski MA. Topiramate selectively protects against seizures induced by ATPA, a GluR5 kainate receptor agonist. Neuropharmacology 2004;46: 1097–1104.PubMedGoogle Scholar
  270. 270.
    Ängehagen M, Ben-Menachem E, Shank R, Rönnbäck L, Hansson E. Topiramate modulation of kainate-induced calcium currents is inversely related to channel phosphorylation. J Neurochem 2004;88: 320–325.PubMedGoogle Scholar
  271. 271.
    Rho JM, Donevan SD, Rogawski MA. Mechanism of action of the anticonvulsant felbamate: opposing effects on N-methyl-d-aspartate and γ-aminobutyric acidA receptors. Ann Neurol 1994; 35: 229–234.PubMedGoogle Scholar
  272. 272.
    Kleckner NW, Glazewski JC, Chen CC, Moscrip TD. Subtype-selective antagonism of N-methyl-d-aspartate receptors by felbamate: insights into the mechanism of action. J Pharmacol Exp Ther 1999;289: 886–894.PubMedGoogle Scholar
  273. 273.
    Harty TP, Rogawski MA. Felbamate block of recombinant N-methyl-d-aspartate receptors: selectivity for the NR2B subunit. Epilepsy Res 2000;39: 47–55.PubMedGoogle Scholar
  274. 274.
    Subramaniam S, Rho JM, Penix L, Donevan SD, Fielding RP, Rogawski MA. Felbamate block of the N-methyl-d-aspartate receptor. J Pharmacol Exp Ther 1995;273: 878–886.PubMedGoogle Scholar
  275. 275.
    Kuo CC, Lin BJ, Chang HR, Hsieh CP. Use-dependent inhibition of the N-methyl-d-aspartate currents by felbamate: a gating modifier with selective binding to the desensitized channels. Mol Pharmacol 2004;65: 370–380.PubMedGoogle Scholar
  276. 276.
    Krishtal O. The ASICs: Signaling molecules? Modulators? Trends Neurosci 2003;26: 477–483.PubMedGoogle Scholar
  277. 277.
    Babinski K, Catarsi S, Biagini G, Séguéla P. Mammalian ASIC2a and ASIC3 subunits co-assemble into heteromeric proton-gated channels sensitive to Gd3+. J Biol Chem 2000;275: 28519–28525.PubMedGoogle Scholar
  278. 278.
    Wemmie JA, Chen J, Askwith CC, et al. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 2002;34: 463–477.PubMedGoogle Scholar
  279. 279.
    Xiong ZG, Zhu XM, Chu XP, et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 2004;118: 687–698.PubMedGoogle Scholar
  280. 280.
    Ali A, Kolappa Pillai K, Jalees Ahmad F, Dua Y, Iqbal Khan Z, Vohora D. Comparative efficacy of liposome-entrapped amiloride and free amiloride in animal models of seizures and serum potassium in mice. Eur Neuropsychopharmacol 2007;17: 227–229.PubMedGoogle Scholar
  281. 281.
    Biagini G, Babinski K, Avoli M, Marcinkiewicz M. Regional and subunit-specific downregulation of acid-sensing ion channels in the pilocarpine model of epilepsy. Neurobiol Dis 2001;8: 45–58.PubMedGoogle Scholar
  282. 282.
    Fang Y, Lahiri J, Picard L. G-protein-coupled receptor microarrays for drug discovery. Drug Discov Today 2003;8: 755–761.PubMedGoogle Scholar
  283. 283.
    Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors. Nat Rev Mol Cell Biol 2002;3: 639–650.PubMedGoogle Scholar
  284. 284.
    Pin J-P, Galvez T, Prézeau L. Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol Ther 2003;98: 325–354.PubMedGoogle Scholar
  285. 285.
    Pin J-P, Kniazeff J, Goudet C, et al. The activation mechanism of class-C G-protein coupled receptors. Biol Cell 2004;96: 335–342.PubMedGoogle Scholar
  286. 286.
    Pin J-P, Acher F. The metabotropic glutamate receptors: structure, activation mechanism and pharmacology. Curr Drug Targets CNS Disord 2002;l: 297–317.Google Scholar
  287. 287.
    Conn PJ. Physiological roles and therapeutic potential of metabotropic glutamate receptors. Ann N Y Acad Sci 2003;1003: 12–21.PubMedGoogle Scholar
  288. 288.
    Schoepp DD. Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. J Pharmacol Exp Ther 2001;299: 12–20.PubMedGoogle Scholar
  289. 289.
    Sansig G, Bushell TJ, Clarke VR, et al. Increased seizure susceptibility in mice lacking metabotropic glutamate receptor 7. J Neurosci 2001;21: 8734–8745.PubMedGoogle Scholar
  290. 290.
    Akiyama K, Daigen A, Yamada N, et al. Long-lasting enhancement of metabotropic excitatory amino acid receptor-mediated polyphosphoinositide hydrolysis in the amygdala/pyriform cortical kindled rats. Brain Res 1992;569: 71–77.PubMedGoogle Scholar
  291. 291.
    Keele NB, Zinebi F, Neugebauer V, Shinnick-Gallagher P. Epileptogenesis upregulates metabotropic glutamate receptor activation of sodium-calcium exchange current in the amygdala. J Neurophysiol 2000;83: 2458–2462.PubMedGoogle Scholar
  292. 292.
    Notenboom RG, Hampson DR, Jansen GH, et al. Up-regulation of hippocampal metabotropic glutamate receptor 5 in temporal lobe epilepsy patients. Brain 2006;129: 96–107.PubMedGoogle Scholar
  293. 293.
    Pacheco Otalora LF, Couoh J, Shigamoto R, Zarei MM, Garrido Sanabria ER. Abnormal mGluR2/3 expression in the perforant path termination zones and mossy fibers of chronically epileptic rats. Brain Res 2006;1098: 170–185.PubMedGoogle Scholar
  294. 294.
    Klapstein GJ, Meldrum BS, Mody I. Decreased sensitivity to group III mGluR agonists in the lateral perforant path following kindling. Neuropharmacology 1999;38: 927–933.PubMedGoogle Scholar
  295. 295.
    Dietrich D, Kral T, Clusmann H, Friedl M, Schramm J. Reduced function of L-AP4-sensitive metabotropic glutamate receptors in human epileptic sclerotic hippocampus. Eur J Pharmacol 1999; 11: 1109–11134.Google Scholar
  296. 296.
    Schoepp DD, Jane DE, Monn JA. Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology 1999;38: 1431–1476.PubMedGoogle Scholar
  297. 297.
    Ritzen A, Mathiesen JM, Thomsen C. Molecular pharmacology and therapeutic prospects of metabotropic glutamate receptor allosteric modulators. Basic Clin Pharmacol Toxicol 2005;97: 202–213.PubMedGoogle Scholar
  298. 298.
    Shipe WD, Wolkenberg SE, Williams DL, Lindsley CW. Recent advances in positive allosteric modulators of metabotropic glutamate receptors. Curr Opin Drug Discov Dev 2005;8: 449–457.Google Scholar
  299. 299.
    Marino MJ, Conn PJ. Glutamate-based therapeutic approaches: allosteric modulators of metabotropic glutamate receptors. Curr Opin Pharmacol 2006;6: 98–102.PubMedGoogle Scholar
  300. 300.
    Moldrich RX, Chapman AG, De Sarro G, Meldrum BS. Glutamate metabotropic receptors as targets for drug therapy in epilepsy. Eur J Pharmacol 2003;476: 3–16.PubMedGoogle Scholar
  301. 301.
    Alexander GM, Godwin DW. Metabotropic glutamate receptors as a strategic target for the treatment of epilepsy. Epilepsy Res 2006;71: 1–22.PubMedGoogle Scholar
  302. 302.
    Chapman AG, Yip PK, Yap JS, et al. Anticonvulsant actions of LY 367385 ((+)-2-methyl-4-carboxyphenylglycine) and AIDA ((R,S)-l-ammoindan-1,5-dicarboxylic acid). Eur J Pharmacol 1999;368: 17–24.PubMedGoogle Scholar
  303. 303.
    Chapman AG, Nanan K, Williams M, Meldrum BS. Anticonvulsant activity of two metabotropic glutamate group I antagonists selective for the mGlu5 receptor: 2-methyl-6-(phenylethynyl)-pyridine (MPEP), and (E)-6-methyl-2-styryl-pyridine (SIB 1893). Neuropharmacology 2000;39: 1567–1574.PubMedGoogle Scholar
  304. 304.
    Shannon HE, Peters SC, Kingston AE. Anticonvulsant effects of LY456236, a selective mGlu1 receptor antagonist. Neuropharmacology 2005;49: 188–195.PubMedGoogle Scholar
  305. 305.
    Löscher W, Dekundy A, Nagel J, Danysz W, Parsons CG, Potschka H. mGlul and mGlu5 receptor antagonists lack anticonvulsant efficacy in rodent models of difficult-to-treat partial epilepsy. Neuropharmacology 2006;50: 1006–1015.PubMedGoogle Scholar
  306. 306.
    Galici R, Jones CK, Hemstapat K, et al. Biphenyl-indanone A, a positive allosteric modulator of the metabotropic glutamate receptor subtype 2, has antipsychotic- and anxiolytic-like effects in mice. J Pharmacol Exp Ther 2006;318: 173–185.PubMedGoogle Scholar
  307. 307.
    Chapman AG, Talebi A, Yip PK, Meldrum BS. Anticonvulsant activity of a mGlu4α receptor selective agonist, (1S,3R,4S)-1-aminocyclopentane-l,2,4-tricarboxylic acid. Eur J Pharmacol 2001;424: 107–113.PubMedGoogle Scholar
  308. 308.
    Mitsukawa K, Yamamoto R, Ofner S, et al. A selective metabotropic glutamate receptor 7 agonist: activation of receptor signaling via an allosteric site modulates stress parameters in vivo. Proc Natl Acad Sci U S A 2005;102: 18712–18717.PubMedGoogle Scholar
  309. 309.
    De Sarro G, Chimirri A, Meldrum BS. Group II mGlu agonists potentiate the anticonvulsant effect of AMPA and NMDA receptor block. Eur J Pharmacol 2002;451: 55–61.PubMedGoogle Scholar
  310. 310.
    Bowery NG, Hill DR, Doble A, Middlemiss DN, Shaw J, Turn-bull MJ. (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 1980;283: 92–94.PubMedGoogle Scholar
  311. 311.
    Jones KA, Borowsky B, Tamm JA, et al. GABAB receptors function as a heteromeric assembly of the subunits GABAB R1 and GABAB R2. Nature 1998;396: 674–678.PubMedGoogle Scholar
  312. 312.
    Pin J-P, Kniazeff J, Binet V, et al. Activation mechanism of the heterodimeric GABAB receptor. Biochem Pharmacol 2004;68: 1565–1572.PubMedGoogle Scholar
  313. 313.
    Blumenfeld H. From molecules to networks: cortical/subcortical interactions in the pathophysiology of idiopathic generalized epilepsy. Epilepsia 2003;44(suppl 2): 7–15.PubMedGoogle Scholar
  314. 314.
    Princivalle AP, Richards DA, Duncan JS, Spreafico R, Bowery NG. Modification of GABAB1 and GABAB2 receptor subunits in the somatosensory cerebral cortex and thalamus of rats with absence seizures (GAERS). Epilepsy Res 2003;55: 39–51.PubMedGoogle Scholar
  315. 315.
    Bowery NG, Bettler B, Froestl W, et al. International Union of Pharmacology. XXXIII. Mammalian γ-aminobutyric acidB receptors: structure and function. Pharmacol Rev 2002;54: 247–264.PubMedGoogle Scholar
  316. 316.
    Binet V, Brajon C, Le Cone L, Acher F, Pin J-P, Prézeau L. The heptahelical domain of GABAB2 is activated directly by CGP7930, a positive allosteric modulator of the GABAB receptor. J Biol Chem 2004;279: 29085–29091.PubMedGoogle Scholar
  317. 317.
    Manning JPA, Richards DA, Bowery NG. Pharmacology of absence epilepsy. Trends Pharmacol Sci 2003;24: 542–549.PubMedGoogle Scholar
  318. 318.
    Gether U, Andersen PH, Larsson OM, Schousboe A. Neurotransmitter transporters: molecular function of important drug targets. Trends Pharmacol Sci 2006;27: 375–383.PubMedGoogle Scholar
  319. 319.
    Wojcik SM, Katsurabayashi S, Guillemin I, et al. A shared vesicular carrier allows synaptic corelease of GABA and glycine. Neuron 2006;50: 575–587.PubMedGoogle Scholar
  320. 320.
    Sonders MS, Amara SG. Channels in transporters. Curr Opin Neurobiol 1996;6: 294–302.PubMedGoogle Scholar
  321. 321.
    Borden LA. GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem Int 1996;29: 335–356.PubMedGoogle Scholar
  322. 322.
    Conti F, Minelli A, Melone M. GABA transporters in the mammalian cerebral cortex: localization, development and pathological implications. Brain Res Brain Res Rev 2004;45: 196–212.PubMedGoogle Scholar
  323. 323.
    Keros S, Hablitz JJ. Subtype-specific GABA transporter antagonists synergistically modulate phasic and tonic GABAA conductances in rat neocortex. J Neurophysiol 2005;94: 2073–2085.PubMedGoogle Scholar
  324. 324.
    Thompson SM, Gahwiler BH. Effects of the GABA uptake inhibitor tiagabine on inhibitory synaptic potentials in rat hippocampal slice cultures. J Neurophysiol 1992;67: 1698–1701.PubMedGoogle Scholar
  325. 325.
    Krogsgaard-Larsen P, Falch E, Larsson OM, Schousboe A. GABA uptake inhibitors: relevance to antiepileptic drug research. Epilepsy Res 1987;l: 77–93.Google Scholar
  326. 326.
    Croucher MJ, Meldrum BS, Krogsgaard-Larsen P. Anticonvulsant activity of GABA uptake inhibitors and their prodrugs following central or systemic administration. Eur J Pharmacol 1983; 89: 217–228.PubMedGoogle Scholar
  327. 327.
    Eells JB, Clough RW, Browning RA, Jobe PC. Comparative fos immunoreactivity in the brain after forebrain, brainstem, or combined seizures induced by electroshock, pentylenetetrazol, focally induced and audiogenic seizures in rats. Neuroscience 2004;123: 279–292.PubMedGoogle Scholar
  328. 328.
    Suzdak PD, Jansen JA. A review of the preclinical pharmacology of tiagabine: a potent and selective anticonvulsant GABA uptake inhibitor. Epilepsia 1995;36: 612–626.PubMedGoogle Scholar
  329. 329.
    Jensen K, Chiu CS, Sokolova I, Lester HA, Mody I. GABA transporter-1 (GATl)-deficient mice: tonic activation of GABAA versus GABAB receptors in the hippocampus. J Neurophysiol 2003;90: 2690–2701.PubMedGoogle Scholar
  330. 330.
    Chiu CS, Brickley S, Jensen K, et al. GABA transporter deficiency causes tremor, ataxia, nervousness, and increased GABA-induced tonic conductance in cerebellum. J Neurosci 2005;25: 3234–3245.PubMedGoogle Scholar
  331. 331.
    White HS, Watson WP, Hansen SL, et al. First demonstration of a functional role for central nervous system betaine/γ-aminobutyric acid transporter (mGAT2) based on synergistic anticonvulsant action among inhibitors of mGAT1 and mGAT2. J Pharmacol Exp Ther 2005;312: 866–874.PubMedGoogle Scholar
  332. 332.
    Clausen RP, Frølund B, Larsson OM, Schousboe A, Krogsgaard-Larsen P, White HS. A novel selective γ-aminobutyric acid transport inhibitor demonstrates a functional role for GABA transporter subtype GAT2/BGT-1 in the CNS. Neurochem Int 2006; 48: 637–642.PubMedGoogle Scholar
  333. 333.
    Kinney GA. GAT-3 transporters regulate inhibition in the neocortex. J Neurophysiol 2005;94: 4533–4537.PubMedGoogle Scholar
  334. 334.
    Mathem GW, Mendoza D, Lozada A, et al. Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epileptic activity. Neurology 1999;52: 453–472.Google Scholar
  335. 335.
    Lee TS, Bjørnsen LP, Paz C, et al. GAT1 and GAT3 expression are differently localized in the human epileptogenic hippocampus. Acta Neuropathol 2006;111: 351–363.PubMedGoogle Scholar
  336. 336.
    Richerson GB, Wu Y. Role of the GABA transporter in epilepsy. Adv Exp Med Biol 2004;548: 76–91.PubMedGoogle Scholar
  337. 337.
    Wu Y, Wang W, Richerson GB. Vigabatrin induces tonic inhibition via GABA transporter reversal without increasing vesicular GABA release. J Neurophysiol 2003;89: 2021–2034.PubMedGoogle Scholar
  338. 338.
    Whitlow RD, Sacher A, Loo DD, Nelson N, Eskandari S. The anticonvulsant valproate increases the turnover rate of γ-aminobutyric acid transporters. J Biol Chem 2003;278: 17716–17726.PubMedGoogle Scholar
  339. 339.
    Danbolt NC. Glutamate uptake. Prog Neurobiol 2001;65: 1–105.PubMedGoogle Scholar
  340. 340.
    Amara SG, Fontana ACK. Excitatory amino acid transporters: keeping up with glutamate. Neurochem Int 2002;41: 313–318.PubMedGoogle Scholar
  341. 341.
    Shigeri Y, Seal RP, Shimamoto K. Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res Brain Res Rev 2004;45: 250–265.PubMedGoogle Scholar
  342. 342.
    Huang YH, Bergles DE. Glutamate transporters bring competition to the synapse. Curr Opin Neurobiol 2004;14: 346–352.PubMedGoogle Scholar
  343. 343.
    Sepkuty JP, Cohen AS, Eccles C, et al. A neuronal glutamate transporter contributes to neurotransmitter GABA synthesis and epilepsy. J Neurosci 2002;22: 6372–6379.PubMedGoogle Scholar
  344. 344.
    Jen JC, Wan J, Palos TP, Howard BD, Baloh RW. Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures. Neurology 2005;65: 529–534.PubMedGoogle Scholar
  345. 345.
    Tanaka K, Watase K, Manabe T, et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 1997;276: 1699–1702.PubMedGoogle Scholar
  346. 346.
    Ueda Y, Doi T, Tsuru N, Tokumaru J, Mitsuyama Y. Expression of glutamate transporters and ionotropic glutamate receptors in GLAST knockout mice. Brain Res Mol Brain Res 2002;104: 120–126.PubMedGoogle Scholar
  347. 347.
    Tessler S, Danbolt NC, Faull RLM, Storm-Mathisen J, Emson PC. Expression of the glutamate transporters in human temporal lobe epilepsy. Neuroscience 1999;88: 1083–1091.PubMedGoogle Scholar
  348. 348.
    Crino PB, Jin H, Shumate MD, Robinson MB, Coulter DA, Brooks-Kayal AR. Increased expression of the neuronal glutamate transporter (EAAT3/EAAC1) in hippocampal and neocortical epilepsy. Epilepsia 2002;43: 211–218.PubMedGoogle Scholar
  349. 349.
    Roper EA, Hoogland G, Kappen SM, et al. Distribution of glutamate transporters in the hippocampus of patients with pharmacoresistant temporal lobe epilepsy. Brain 2002;125: 32–43.Google Scholar
  350. 350.
    Bridges RJ, Kavanaugh MP, Chamberlin AR. A pharmacological review of competitive inhibitors and substrates of high-affinity, sodium-dependent glutamate transport in the central nervous system. Curr Pharm Des 1999;5: 363–379.PubMedGoogle Scholar
  351. 351.
    Tsukada S, Iino M, Takayasu Y, Shimamoto K, Ozawa S. Effects of a novel glutamate transporter blocker, (2S,3S)-3-{3-[4-(trifluoromethyl)benzoylamino]benzyloxy}aspartate (TFB-TBOA), on activities of hippocampal neurons. Neuropharmacology 2005;48: 479–491.PubMedGoogle Scholar
  352. 352.
    Shimamoto K, Sakai R, Takaoka K. Characterization of novell-threo-β-benzyloxyaspartate derivatives, potent blockers of the glutamate transporters. Mol Pharmacol 2004;65: 1008–1015.PubMedGoogle Scholar
  353. 353.
    Maragakis NJ, Rothstein JD. Glutamate transporters: animal models to neurologic disease. Neurobiol Dis 2004;15: 461–473.PubMedGoogle Scholar
  354. 354.
    Dunlop J. Glutamate-based therapeutic approaches: targeting the glutamate transport system. Curr Opin Pharmacol 2006;6: 103–107.PubMedGoogle Scholar
  355. 355.
    Shimada F, Shiga Y, Morikawa M, et al. The neuroprotective agent MS-153 stimulates glutamate uptake. Eur J Pharmacol 1999;386: 263–270.PubMedGoogle Scholar
  356. 356.
    Fontana ACK, Guizzo R, de Oliveira Beleboni R, et al. Purification of a neuroprotective component ofParawixia bistriata spider venom that enhances glutamate uptake. Br J Pharmacol 2003; 139: 1297–1309.PubMedGoogle Scholar
  357. 357.
    Rothstein JD, Patel S, Regan MR, et al. β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 2005;433: 73–77.PubMedGoogle Scholar
  358. 358.
    Bellocchio EE, Reimer RJ, Fremeau RT, Edwards RH. Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 2000;289: 957–960.PubMedGoogle Scholar
  359. 359.
    Takamori S, Rhee JS, Rosenmund C, Jahn R. Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 2000;407: 189–194.PubMedGoogle Scholar
  360. 360.
    Boulland JL, Qureshi T, Seal RP, et al. Expression of the vesicular glutamate transporters during development indicates the widespread corelease of multiple neurotransmitters. J Comp Neurol 2004;480: 264–280.PubMedGoogle Scholar
  361. 361.
    Kim DS, Kwak SE, Kim JE, et al. Bilateral enhancement of excitation via up-regulation of vesicular glutamate transporter subtype 1, not subtype 2, immunoreactivity in the unilateral hypoxic epilepsy model. Brain Res 2005;1055: 122–130.PubMedGoogle Scholar
  362. 362.
    Ogita K, Hirata K, Bole DG, et al. Inhibition of vesicular glutamate storage and exocytotic release by Rose Bengal. J Neurochem 2001;77: 34–42.PubMedGoogle Scholar
  363. 363.
    Hilfiker S, Pieribone VA, Czemik AJ, Kao HT, Augustine GJ, Greengard P. Synapsins as regulators of neurotransmitter release. Philos Trans R Soc Lond B Biol Sci 1999;354: 269–279.PubMedGoogle Scholar
  364. 364.
    Li L, Chin LS, Shupliakov O, et al. Impairment of synaptic vesicle clustering and of synaptic transmission, and increased seizure propensity, in synapsin I-deficient mice. Proc Natl Acad Sci U S A 1995;92: 9235–9239.PubMedGoogle Scholar
  365. 365.
    Gitler D, Takagishi Y, Feng J, et al. Different presynaptic roles of synapsins at excitatory and inhibitory synapses. J Neurosci 2004; 24: 11368–11380.PubMedGoogle Scholar
  366. 366.
    Bogen IL, Boulland JL, Mariussen E, et al. Absence of synapsin I and II is accompanied by decreases in vesicular transport of specific neurotransmitters. J Neurochem 2006;96: 1458–1466.PubMedGoogle Scholar
  367. 367.
    Janz R, Goda Y, Geppert M, Missler M, Sudhof TC. SV2A and SV2B function as redundant Ca2+ regulators in neurotransmitter release. Neuron 1999;24: 1003–1016.PubMedGoogle Scholar
  368. 368.
    Crowder KM, Günther JM, Jones TA, et al. Abnormal neurotransmission in mice lacking synaptic vesicle protein 2A (SV2A). Proc Natl Acad Sci U S A 1999;96: 15268–15273.PubMedGoogle Scholar
  369. 369.
    Custer KL, Austin NS, Sullivan JM, Bajjalieh SM. Synaptic vesicle protein 2 enhances release probability at quiescent synapses. J Neurosci 2006;26: 1303–1313.PubMedGoogle Scholar
  370. 370.
    Noyer M, Gillard M, Matagne A, Henichart JP, Wulfert E. The novel antiepileptic drug levetiracetam (ucb L059) appears to act via a specific binding site in CNS membranes. Eur J Pharmacol 1995;286: 137–146.PubMedGoogle Scholar
  371. 371.
    Lynch BA, Lambeng N, Nocka K, et al. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc Natl Acad Sci U S A 2004;101: 9861–9866.PubMedGoogle Scholar
  372. 372.
    Kenda BM, Matagne AC, Talaga PE, et al. Discovery of 4-sub-stituted pyrrolidone butanamides as new agents with significant antiepileptic activity. J Med Chem 2004;47: 530–549.PubMedGoogle Scholar
  373. 373.
    Gillard M, Chatelain P, Fuks B. Binding characteristics of levetiracetam to synaptic vesicle protein 2A (SV2A) in human brain and in CHO cells expressing the human recombinant protein. Eur J Pharmacol 2006;536: 102–108.PubMedGoogle Scholar
  374. 374.
    Potschka H, Krupp E, Ebert U, et al. Kindling-induced overexpression ofHomer 1A and its functional implications for epileptogenesis. Eur J Neurosci 2002;16: 2157–2165.PubMedGoogle Scholar
  375. 375.
    Anlezark G, Horton RW, Meldrum B, Sawaya MCB. Anticonvulsant action of ethanolamine-O-sulphate and di-n-propylacetate and the metabolism of γ-aminobutyric acid (GABA) in mice with audiogenic seizures. Biochem Pharmacol 1976;25: 413–417.PubMedGoogle Scholar
  376. 376.
    Schechter PJ, Tranier Y, Jung M, Sjoerdsma A. Antiseizure activity of γ-acetylenic γ-aminobutyric acid: catalytic irreversible inhibitor of γ-aminobutyric acid transaminase. J Pharmacol Exp Ther 1977;201: 606–612.PubMedGoogle Scholar
  377. 377.
    Meldrum B, Horton R. Blockade of epileptic responses in the photosensitive baboon,Papio papio, by two irreversible inhibitors of GABA-transaminase, γ-acetylenic GABA (4-amino-hex-5-ynoic acid) and γ-vinyl GABA (4-amino-hex-5-enoic acid). Psychopharmacology (Berl) 1978;59: 47–50.Google Scholar
  378. 378.
    De Biase D, Barra D, Bossa F, Pucci P, John RA. Chemistry of the inactivation of 4-aminobutyrate aminotransferase by the antiepileptic drug vigabatrin. J Biol Chem 1991;266: 20056–20061.PubMedGoogle Scholar
  379. 379.
    Meldrum BS, Murugaiah K. Anticonvulsant action in mice with sound-induced seizures of the optical isomers of γ-vinyl GABA. Eur J Pharmacol 1983;89: 149–152.PubMedGoogle Scholar
  380. 380.
    Kalviainen R, Halonen T, Pitkanen A, Riekkinen PJ. Amino acid levels in the cerebrospinal fluid of newly diagnosed epileptic patients: effect of vigabatrin and carbamazepine monotherapies. J Neurochem 1993;60: 1244–1250.PubMedGoogle Scholar
  381. 381.
    Petroff OA, Rothman DL. Measuring human brain GAB A in vivo: effects of GABA-transaminase inhibition with vigabatrin. Mol Neurobiol 1998;16: 97–121.PubMedGoogle Scholar
  382. 382.
    Verhoeff, NP, Petroff OA, Hyder F, et al. Effects of vigabatrin on the GABAergic system as determined by [123I]iomazenil SPECT and GABA MRS. Epilepsia 1999;40: 1433–1438.PubMedGoogle Scholar
  383. 383.
    Overstreet LS, Westbrook GL. Paradoxical reduction of synaptic inhibition by vigabatrin. J Neurophysiol 2001;86: 596–603.PubMedGoogle Scholar
  384. 384.
    Lawden MC, Eke T, Degg C, Harding GF, Wild JM. Visual field defects associated with vigabatrin therapy. J Neurol Neurosurg Psychiatry 1999;67: 716–722.PubMedGoogle Scholar
  385. 385.
    Rivera C, Voipio J, Kaila K. Two developmental switches in GABAergic signalling: the K+-Cl cotransporter KCC2 and carbonic anhydrase CAVII. J Physiol 2005;564: 27–36 [Erratum in: J Physiol 2005;564:953].Google Scholar
  386. 386.
    Staley KJ, Soldo BL, Proctor WR. Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science 1995;269: 977–981.PubMedGoogle Scholar
  387. 387.
    Fujiwara-Tsukamoto Y, Isomura Y, Nambu A, Takada M. Excitatory GABA input directly drives seizure-like rhythmic synchronization in mature hippocampal CA1 pyramidal cells. Neuroscience 2003;119: 265–275.PubMedGoogle Scholar
  388. 388.
    Church J, McLennan H. Electrophysiological properties of rat CA1 pyramidal neuronesin vitro modified by changes in extracellular bicarbonate. J Physiol 1989;415: 85–108.PubMedGoogle Scholar
  389. 389.
    Tang CM, Dichter M, Morad M. Modulation of the N-methyl-d-aspartate channel by extracellular H+. Proc Natl Acad Sci USA 1990;87: 6445–6449.PubMedGoogle Scholar
  390. 390.
    Millichap JG, Woodbury DM, Goodman LS. Mechanism of the anticonvulsant action of acetazoleamide, a carbonic anhydrase inhibitor. J Pharmacol Exp Ther 1955;115: 251–258.PubMedGoogle Scholar
  391. 391.
    Golla FL, Sessions HR. Control of petit mal by acetazolamide. J Ment Sci 1957;103: 214–217.PubMedGoogle Scholar
  392. 392.
    Leppik IE. Zonisamide: chemistry, mechanism of action, and pharmacokinetics. Scizure 2004;13(suppl 1): S5-S9.Google Scholar
  393. 393.
    Dodgson SJ, Shank RP, Maryanoff BE. Topiramate as an inhibitor of carbonic anhydrase isoenzymes. Epilepsia 2000;41(suppl 1): S35-S39.PubMedGoogle Scholar
  394. 394.
    Shank RP, Gardocki JF, Vaught JL, et al. Topiramate: preclinical evaluation of structurally novel anticonvulsant. Epilepsia 1994; 35: 450–460.PubMedGoogle Scholar
  395. 395.
    De Simone G, Di Fiore A, Menchise V, et al. Carbonic anhydrase inhibitors. Zonisamide is an effective inhibitor of the cytosolic isozyme II and mitochondrial isozyme V: solution and X-ray crystallographic studies. Bioorg Med Chem Lett 2005;15: 2315–2320.PubMedGoogle Scholar
  396. 396.
    Herrero AI, Del Olmo N, Gonzalez-Escalada JR, Solis JM. Two new actions of topiramate: inhibition of depolarizing GABAA-mediated responses and activation of a potassium conductance. Neuropharmacology 2002;42: 210–220.PubMedGoogle Scholar
  397. 397.
    Russo E, Constanti A. Topiramate hyperpolarizes and modulates the slow poststimulus AHP of rat olfactory cortical neurones in vitro. Br J Pharmacol 2004;141: 285–301.PubMedGoogle Scholar
  398. 398.
    Mody I. The molecular basis of kindling. Brain Pathol 1993;3: 395–403.PubMedGoogle Scholar
  399. 399.
    Avoli M, Louvel J, Pumain R, Köhling R. Cellular and molecular mechanisms of epilepsy in the human brain. Prog Neurobiol 2005;97: 166–200.Google Scholar
  400. 400.
    Rogawski M. Excitatory amino acids and seizures. In: Stone TW, ed. CNS neurotransmitters and neuromodulators: glutamate. Boca Raton, FL: CRC Press, 1995: 219–237.Google Scholar
  401. 401.
    Nemani VM, Binder DK. Emerging role of gap junctions in epilepsy. Histol Histopathol 2005;20: 253–259.PubMedGoogle Scholar
  402. 402.
    Nakase T, Naus CC. Gap junctions and neurological disorders of the central nervous system. Biochim Biophys Acta 2004; 1662: 149–158.PubMedGoogle Scholar
  403. 403.
    Nedergaard M, Ransom B, Goldman SA. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 2003;26: 525–530.Google Scholar
  404. 404.
    Venance L, Rozov A, Blatow M, Burnashev N, Feldmeyer D, Monyer H. Connexin expression in electrically coupled postnatal rat brain neurons. Proc Natl Acad Sci U S A 2000;97: 10260–10265.PubMedGoogle Scholar
  405. 405.
    Nagy JI, Rash JE. Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS. Brain Res Brain Res Rev 2000;32: 29–44.PubMedGoogle Scholar
  406. 406.
    Maier N, Guldenagel M, Sohl G, Siegmund H, Willecke K, Draguhn A. Reduction of high-frequency network oscillations (ripples) and pathological network discharges in hippocampal slices from connexin 36-deficient mice. J Physiol 2002;541: 521–528.PubMedGoogle Scholar
  407. 407.
    Pais I, Hormuzdi SG, Monyer H, et al. Sharp wave-like activity in the hippocampus in vitro in mice lacking the gap junction protein connexin 36. J Neurophysiol 2003;89: 2046–2054.PubMedGoogle Scholar
  408. 408.
    Samoilova M, Li J, Pelletier MR, et al. Epileptiform activity in hippocampal slice cultures exposed chronically to bicuculline: increased gap junctional function and expression. J Neurochem 2003;86: 687–699.PubMedGoogle Scholar
  409. 409.
    Fonseca CG, Green CR, Nicholson LF. Upregulation in astrocytic connexin 43 gap junction levels may exacerbate generalized seizures in mesial temporal lobe epilepsy. Brain Res 2002;929: 105–116.PubMedGoogle Scholar
  410. 410.
    Timofeev I, Steriade M. Neocortical seizures: initiation, development and cessation. Neuroscience 2004;123: 299–336.PubMedGoogle Scholar
  411. 411.
    Perez-Velazquez JL, Valiante TA, Carlen PI. Modulation of gap junctional mechanisms during calcim-free induced field burst activity: a possible role for electrotonic couplin in epileptogenesis. J Neurosci 1994;14: 4308–4317.PubMedGoogle Scholar
  412. 412.
    Jahromi SS, Wentlandt K, Piran S, Carlen PL. Anticonvulsant actions of gap junctional blockers in an in vitro seizure model. J Neurophysiol 2002;88: 1893–1902.PubMedGoogle Scholar
  413. 413.
    Gigout S, Louvel J, Kawasaki H, et al. Effects of gap junction blockers on human neocortical synchronization. Neurobiol Dis 2006;22: 496–508.PubMedGoogle Scholar
  414. 414.
    Köhling R, Gladwell SJ, Bracci E, Vreugdenhil M, Jefferys JGR. Prolonged epileptiform bursting induced by 0-Mg2+ in rat hippocampal slices depends on gap junctional coupling. Neuroscience 2001;105: 579–587.PubMedGoogle Scholar
  415. 415.
    Gigout S, Louvel J, Pumain R. Effects in vitro and in vivo of a gap junction blocker on epileptiform activities in a genetic model of absence epilepsy. Epilepsy Res 2006;69: 15–29.PubMedGoogle Scholar
  416. 416.
    Proulx E, Leshchenko Y, Kokarovtseva L, et al. Functional contribution of specific brain areas to absence seizures: role of thalamic gap-junctional coupling. Eur J Neurosci 2006;23: 489–496.PubMedGoogle Scholar
  417. 417.
    Gareri P, Condorelli D, Belluardo N, et al. Antiabsence effects of carbenoxolone in two genetic animal models of absence epilepsy (WAG/Rij rats andlh/lh mice). Neuropharmacology 2005;49: 551–563.PubMedGoogle Scholar
  418. 418.
    Tian GF, Azmi H, Takano T, et al. An astrocytic basis of epilepsy. Nat Med 2005;11: 973–981.PubMedGoogle Scholar
  419. 419.
    Upton N, Blackburn TP, Campbell CA, et al. Profile of SB-204269, a mechanistically novel anticonvulsant drug, in rat models of focal and generalized epileptic seizures. Br J Pharmacol 1997;121: 1679–1686.PubMedGoogle Scholar
  420. 420.
    Parsons AA, Bingham S, Raval P, Read S, Thompson M, Upton N. Tonabersat (SB-220453) a novel benzopyran with anticonvulsant properties attenuates trigeminal nerve-induced neurovascular reflexes. Br J Pharmacol 2001;132: 1549–1557.PubMedGoogle Scholar
  421. 421.
    McCormick DA, Contreras D. On the cellular and network bases of epileptic seizures. Annu Rev Physiol 2001;63: 815–846.PubMedGoogle Scholar
  422. 422.
    Meeren H, van Luijtelaar G, Lopes da Silva F, Coenen A. Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory. Arch Neurol 2005;62: 371–376.PubMedGoogle Scholar
  423. 423.
    Wang XJ, Rinzel J, Rogawski MA. A model of the T-type calcium current and the low-threshold spike in thalamic neurons. J Neurophysiol 1991;66: 839–850.PubMedGoogle Scholar
  424. 424.
    Manning JPA, Richards DA, Leresche N, Crunelli V, Bowery NG. Cortical-area specific block of genetically determined absence seizures by ethosuximide. Neuroscience 2004;123: 5–9.PubMedGoogle Scholar
  425. 425.
    Klein JP, Khera DS, Nersesyan H, Kimchi EY, Waxman SG, Blumenfeld H. Dysregulation of sodium channel expression in cortical neurons in a rodent model of absence epilepsy. Brain Res 2004;1000: 102–109.PubMedGoogle Scholar
  426. 426.
    Karle J, Woldbye DP, Elster L, et al. Antisense oligonucleotide to GABAA receptor γ2 subunit induces limbic status epilepticus. J Neurosci Res 1998;54: 863–869.PubMedGoogle Scholar
  427. 427.
    Dodson PD, Billups B, Rusznák Z, Szucs G, Barker MC, Forsythe ID. Presynaptic rat Kv1.2 channels suppress synaptic terminal hyperexcitability following action potential invasion. J Physiol 2003;550.1: 27–33.Google Scholar
  428. 428.
    Gu N, Vervaeke K, Hu H, Storm JF. Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells. J Physiol 2005;566: 689–715.PubMedGoogle Scholar
  429. 429.
    Long SB, Campbell EB, Mackinnon R. Crystal structure of a mammalian voltage-dependentShaker family K+ channel. Science 2005;309: 897–903.PubMedGoogle Scholar
  430. 430.
    Long SB, Campbell EB, Mackinnon R. Voltage sensor of Kvl.2: structural basis of electromechanical coupling. Science 2005;309: 903–908.PubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2007

Authors and Affiliations

  • Brian S. Meldrum
    • 1
  • Michael A. Rogawski
    • 2
  1. 1.Centre for Neuroscience, Division of Biomedical and Health Sciences, School of MedicineKings CollegeLondonUK
  2. 2.Epilepsy Research Section, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesda

Personalised recommendations