Advertisement

Journal of Nuclear Cardiology

, Volume 15, Issue 2, pp 209–217 | Cite as

Arterial wall uptake of fluorodeoxyglucose on PET imaging in stable cancer disease patients indicates higher risk for cardiovascular events

  • Benoit PaulmierEmail author
  • Michèle Duet
  • Raphaël Khayat
  • Nadia Pierquet-Ghazzar
  • Jean-Plerre Laissy
  • Christophe Maunoury
  • Florent Hugonnet
  • Elisabeth Sauvaget
  • Ludovic Trinquart
  • Marc Faraggi
Original Articles

Abstract

Background

We aimed to evaluate the additional information of 18 fluorodeoxyglucose (FDG) arterial uptake with respect to other conventional cardiovascular risk factors and arterial calcifications in patients with stable cancer.

Methods and Results

We compared the rate of cardiovascular events in 2 groups of patients with (n=45) and without (n=56) enhanced arterial 18FDG uptake, matched for the main clinical parameters. The extent and intensity of 18FDG uptake were quantified. A calcification index was also determined. About one third of the selected patients had a history of cardiovascular events and thus could be defined as “vulnerable patients.” Old cardiovascular events (>6 months before or after positron emission tomography [PET]) and recent cardiovascular events (<6 months before or after PET) were significantly more frequent in the high-FDG uptake group than in the low-FDG uptake group (48% vs 15%, respectively [P=.0006], and 30% vs 1.8%, respectively [P=.0002]). The extent of 18FDG arterial uptake was the unique factor significantly related to the occurrence of a recent event by either logistic regression or discriminant analysis (P=.004 for all). Conversely, calcium index was the single factor related to old events (P=.004 and P=.002, respectively).

Conclusions

Extensive arterial 18FDG uptake might be an indicator of an evolving atherosclerotic process and should be mentioned in PET/computed tomography reports.

Key Words

Fluorine 18 fluorodeoxyglucose positron emission tomography/computed tomography scan atherosclerosis cardiovascular risk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ben-Haim S, Kupzov E, Tamir A, Israel O. Evaluation of 18F-FDG uptake and arterial wall calcifications using 18F-FDG PET/CT. J Nucl Med 2004;45:1816–21.PubMedGoogle Scholar
  2. 2.
    Dunphy MP, Freiman A, Larson SM, Strauss HW. Association of vascular 18F-FDG uptake with vascular calcification. J. Nucl Med 2005;46:1278–84.PubMedGoogle Scholar
  3. 3.
    Yun M, Yeh D, Araujo L, Jang S, Newberg A, Alavi A. 18F-FDG uptake in the large arteries a new observation. Clin Nucl Med 2001;26:314–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Rudd JHF, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002;105:2708–11.PubMedCrossRefGoogle Scholar
  5. 5.
    Tatsumi M, Cohade C, Nakamoto Y, Wahl RL. Fluorodeoxyglucose uptake in the aortic wall at PET/CT: possible finding for active atherosclerosis. Radiology 2003;229:831–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Lederman RJ, Raylman RR, Fisher SJ, Kison PV, San H, Nabel EG, et al. Detection of atherosclerosis using a novel positronsensitive probe and 18FDG. Nucl Med Commun 2001;22:747–53.PubMedCrossRefGoogle Scholar
  7. 7.
    Ogawa M, Ishino S, Mukai T, Asano D, Teramoto N, Watabe H, et al. 18F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. J Nucl Med 2004;45: 1245–50.PubMedGoogle Scholar
  8. 8.
    Tawakol A, Migrino R, Hoffmann U, Abbara S, Houser S, Gewirtz H, et al. Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. J Nucl Cardiol 2005;12:294–301.PubMedCrossRefGoogle Scholar
  9. 9.
    Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation 1995;92:657–71.PubMedGoogle Scholar
  10. 10.
    Casscells W, Naghavi M, Willerson JT. Vulnerable atherosclerotic plaque: a multifocal disease. Circulation 2003;107:2072–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Jander S, Sitzer M, Schumann R, Schroeter M, Siebler M, Steinmetz H, et al. Inflammation in high-grade carotid stenosis: a possible role for macrophages and T cells in plaque destabilization. Stroke 1998;29:1625–30.PubMedGoogle Scholar
  12. 12.
    Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med 1999;340:115–26.PubMedCrossRefGoogle Scholar
  13. 13.
    Davies JR, Rudd JHF, Fryer T, Graves MJ, Clark JC, Kirkpatrick PJ, et al. Identification of culprit lesions after transient ischemic attack by combined 18F fluorodeoxyglucose positron-emission tomography and high-resolution magnetic resonance imaging. Stroke 2005;36:2642–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Smith SC Jr, Blair SN, Bonow RO, Brass LM, Cerqueira MD, Dracup K, et al. AHA/ACC guidelines for preventing heart attack and death in patients with atherosclerotic cardiovascular disease: 2001 update. A statement for healthcare professionals from the Association and the American College of Cardiology. J Am Coll Cardiol 2001;38:1581–3.PubMedCrossRefGoogle Scholar
  15. 15.
    Fuster V, Moreno PR, Fayad ZA, Corti R, Badimon JJ. Atherothrombosis and high-risk plaque. Part I: evolving concepts. J Am Coll Cardiol 2005;46:937–54.PubMedCrossRefGoogle Scholar
  16. 16.
    Faxon DP, Fuster V, Libby P, Beckman JA, Hiatt WR, Thompson RW, et al. Atherosclerotic Vascular Disease Conference: Writing Group III: pathophysiology. Circulation 2004;109:2617–25.PubMedCrossRefGoogle Scholar
  17. 17.
    Fleiner M, Kummer M, Mirlacher M, Sauter G, Cathomas G, Krapf R, et al. Arterial neovascularization and inflammation in vulnerable patients: early and late signs of symptomatic atherosclerosis. Circulation 2004;110:2843–50.PubMedCrossRefGoogle Scholar
  18. 18.
    Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, et al. From vulnerable plaque to vulnerable patient: a call for news definitions and risk assessment strategies: part I. Circulation 2003;108:1664–72.PubMedCrossRefGoogle Scholar
  19. 19.
    Ohlmann P, Kim S-W, Mintz GS, Pregowski J, Tyczynski P, Maehara A, et al. Cardiovascular events in patients with coronary plaque rupture and nonsignificant stenosis. Am J Cardiol 2005;96:1631–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Eagle KA, Rihal CS, Foster ED, Mickel MC, Gersh BJ. Long-term survival in patients with coronary artery disease: importance of peripheral vascular disease. The Coronary Artery Surgery Study (CASS) Investigators J Am Coll Cardiol 1994;23:1091–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Cupples LA, Gagnon DR, Wong ND, Ostfeld AM, Kannel WB, Preexisting cardiovascular conditions and long-term prognosis after initial myocardial infarction: the Framingham Study. Am Heart J 1993;125:863–72.PubMedCrossRefGoogle Scholar
  22. 22.
    Pyorala K, Ballantyne CM, Gumbiner B, Lee MW, Shah A, Davies MJ, et al. Reduction of cardiovascular events by simvastatin in nondiabetic coronary heart disease patients with and without the metabolic syndrome: subgroup analyses of the Scandinavian Simvastatin Survival Study (4S). Diabetes Care 2004;27:1735–40.PubMedCrossRefGoogle Scholar
  23. 23.
    Kietselaer BL, Reutelingsperger CP, Heidendal GA, Daemen MJ, Mess WH, Hofstra L, et al. Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. N Engl J Med 2004;350:1472–3.PubMedCrossRefGoogle Scholar
  24. 24.
    Ridker PM. High-sensitivity C-reactive protein, inflammation, and cardiovascular risk: from concept to clinical practice to clinical benefit. Am Heart J 2004;148(Suppl):S19–26.CrossRefGoogle Scholar
  25. 25.
    Signorelli SS, Stivala A, Di Pino L, Salmeri M, Tempera G, Toscano MA, et al. Chronic peripheral arteriopathy is associated with seropositivity to Chlamydia pneumoniae. J Chemother 2006;18:103–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Arad Y, Goodman KJ, Roth M, Newstein D, Guerci AD. Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: the St. Francis Heart Study. J Am Coll Cardiol 2005;46:158–65.PubMedCrossRefGoogle Scholar
  27. 27.
    Trivedi RA, U-King-Im JM, Graves MJ, Kirkpatrick PJ, Gillard JH. Noninvasive imaging of carotid plaque inflammation Neurology 2004;63:187–8.PubMedGoogle Scholar
  28. 28.
    Ben-Haim S, Kupzov E, Tamir A, Frenkel A, Israel O. Changing patterns of abnormal vascular wall F-18 fluorodeoxyglucose uptake on follow-up PET/CT studies. J. Nucl Cardiol 2006;13:791–800.PubMedCrossRefGoogle Scholar
  29. 29.
    Sakalihasan N, Hustinx R, Limet R. Contribution of PET scanning to the evaluation of abdominal aortic aneurysm. Semin Vasc Surg 2004;17:144–53.PubMedCrossRefGoogle Scholar
  30. 30.
    Sakalihasan N, Limet R, Defawe OD. Abdominal aortic aneurysm. Lancet 2005;365:1577–89.PubMedCrossRefGoogle Scholar
  31. 31.
    Vallabhajosula S, Fuster V. Atherosclerosis: imaging techniques and the evolving role of nuclear medicine. J Nucl Med 1997;38: 1788–96.PubMedGoogle Scholar
  32. 32.
    Tahara N, Kai H, Yamagishi S, Mizoguchi M, Nakaura H, Ishibashi M, et al. Vascular inflammation evaluated by [18F]-fluorodeoxyglucose positron emission tomography is associated with the metabolic syndrome. J Am Coll Cardiol 2007;49: 1533–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Rioufol G, Gilard M, Finet G, Ginon I, Boschat J, Andre-Fouet X. Evolution of spontaneous atherosclerotic plaque rupture with medical therapy: long-term follow-up with intravascular ultrasound. Circulation 2004;110:2875–80.PubMedCrossRefGoogle Scholar
  34. 34.
    London GM, Marchais SJ, Guerin AP, Metivier F. Arteriosclerosis, vascular calcifications and cardiovascular disease in uremia. Curr Opin Nephrol Hypertens 2005;14:525–31.PubMedCrossRefGoogle Scholar
  35. 35.
    Wang AY, Ho SS, Wang M, Liu EK, Ho S, Li PK, et al. Cardiac valvular calcification as a marker of atherosclerosis and arterial calcification in end-stage renal disease. Arch Intern Med 2005;165:327–32.PubMedCrossRefGoogle Scholar
  36. 36.
    Sigrist M, Bungay P, Taal MW, McIntyre CW. Vascular calcification and cardiovascular function in chronic kidney disease. Nephrol Dial Transplant 2006;21:707–14.PubMedCrossRefGoogle Scholar
  37. 37.
    Reaven PD, Sacks J; Investigators for the VADT. Coronary artery and abdominal aortic calcification are associated with cardiovascular disease in type 2 diabetes. Diabetologia 2005;48:379–85.PubMedCrossRefGoogle Scholar
  38. 38.
    Tahara N, Kai H, Ishibashi M, Nakaura H, Kaida H, Baba K, et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J. Am Coll Cardiol 2006;48:1825–31.PubMedCrossRefGoogle Scholar
  39. 39.
    Arauz A, Hoyos L, Zenteno M, Mendoza, R, Alexanderson E. Carotid plaque inflammation detected by 18F-fluorodeoxyglucosepositron emission tomography. Pilot study. Clin Neurol Neurosurg 2007;109:409–12.PubMedCrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2008

Authors and Affiliations

  • Benoit Paulmier
    • 1
    • 2
    Email author
  • Michèle Duet
    • 1
    • 3
  • Raphaël Khayat
    • 1
  • Nadia Pierquet-Ghazzar
    • 1
  • Jean-Plerre Laissy
    • 3
    • 4
  • Christophe Maunoury
    • 1
    • 2
  • Florent Hugonnet
    • 1
    • 2
  • Elisabeth Sauvaget
    • 5
  • Ludovic Trinquart
    • 6
  • Marc Faraggi
    • 1
    • 2
  1. 1.Department of Nuclear MedicineHôpital Européen Georges Pompidou (Assistance Publique-Hôpitaux de Paris)ParisFrance
  2. 2.University Paris DescartesParisFrance
  3. 3.University Paris VIIParisFrance
  4. 4.Department of RadiologyHôpital Bichat (Assistance Publique-Hôpitaux de Paris)ParisFrance
  5. 5.Department of OtorhinolaryngologyHôpital Lariboisière (Assistance Publique-Hôpitaux de Paris)ParisFrance
  6. 6.Department of Epidemiology and Clinical Research Unit, INSERM CIE 4Hôpital Européen Georges Pompidou (Assistance Publique-Hôpitaux de Paris)ParisFrance

Personalised recommendations