Journal of Nuclear Cardiology

, Volume 14, Issue 3, pp 298–307 | Cite as

Evaluation of left ventricular mechanical dyssynchrony as determined by phase analysis of ECG-gated SPECT myocardial perfusion imaging in patients with left ventricular dysfunction and conduction disturbances

  • Mark A. Trimble
  • Salvador Borges-NetoEmail author
  • Stuart Smallhelser
  • Ji Chen
  • Emily F. Honeycutt
  • Linda K. Shaw
  • Jaekyeong Heo
  • Robert A. Pagnanelli
  • E. Lindsey Tauxe
  • Ernest V. Garcia
  • Fabio Esteves
  • Frank Seghatol-Eslami
  • G. Neal Kay
  • Ami E. Iskandrian
Original Articles



Cardiac resynchronization therapy (CRT) is approved for the treatment of patients with advanced systolic heart failure and evidence of dyssynchrony on electrocardiograms. However, a significant percentage of patients do not demonstrate improvement with CRT. Echocardiographic techniques have been used for more accurate determination of dyssynchrony. Single photon emission computed tomography (SPECT) myocardial perfusion imaging has not previously been used to evaluate cardiac dyssynchrony. The objective of this study is to evaluate mechanical dyssynchrony as described by phase analysis of gated SPECT images in patients with left ventricular dysfunction, conduction delays, and ventricular paced rhythms.

Methods and Results

A novel count-based method is used to extract regional systolic wall thickening amplitude and phase from gated SPECT images. Five indices describing the phase dispersion of the onset of mechanical contraction are determined: peak phase, phase SD, bandwidth, skewness, and kurtosis. These indices were determined in consecutive patients with left ventricular dysfunction (n=120), left bundle branch block (n=33), right bundle branch block (n=19), and ventricular paced rhythms (n=23) and were compared with normal control subjects (n=157). Phase SD, bandwidth, skewness, and kurtosis were significantly different between patients with left ventricular dysfunction, left bundle branch block, right bundle branch block, and ventricular paced rhythms and normal control subjects (all P<.001) Peak phase was significantly different between patients with right ventricular paced rhythms and normal control subjects (P=.001).


A novel SPECT technique for describing left ventricular mechanical dyssyn-chrony has been developed and may prove useful in the evaluation of patients for CRT.

Key Words

Myocardial perfusion imaging heart failure gated single photon emission computed tomography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult a report from the American College of Cardiology/American Heart Association Task Force on Practice Guidelines Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure J Am Coll Cardiol 2005;46:e1–82.Google Scholar
  2. 2.
    American Heart Association. Heart disease and stroke statistics: 2005 update. Dallas, American Heart Association: 2005.Google Scholar
  3. 3.
    O’Connell JB, Bristow MR. Economic impact of heart failure in the United States: time for a different approach. J Heart Lung Transplant 1994;13:S107–12.PubMedGoogle Scholar
  4. 4.
    Abraham WT, Fisher WG, Smith AL, DeLurgio DB, Leon AR, Loh E, et al. MIRACLE Study Group. Multicenter InSync Randomized Clinical Evaluation Cardiac resynchronization in chronic heart failure. N Engl J Med 2002;346:1845–53.PubMedCrossRefGoogle Scholar
  5. 5.
    Higgins SL, Hummel JD, Niazi IK, Giudici MC, Worley SJ, Saxon LA, et al. Cardiac resynchronization therapy for the treatment of heart failure in patients with intraventricular conduction delay and malignant ventricular tachyarrhythmias. J Am Coll Cardiol 2003, 42:1454–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Young JB, Abraham WT, Smith AL, Leon AR, Lieberman R. Wilkoff B, et al. Multicenter InSync ICD Randomized Clinical Evaluation (MIRACLEICD) Trial Investigators Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: the MIRACLE ICD Trial. JAMA 2003;289:2685–94.PubMedCrossRefGoogle Scholar
  7. 7.
    McAlister F, Ezekowitz J, Wiebe N, Rowe B, Spooner C, Crumley E. et al. Cardiac resynchronization therapy for congestive heart failure. Evid Rep Technol Assess (Summ) 2004:1–8.Google Scholar
  8. 8.
    Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass DA, De Marco T, et al. Comparison of Medical Therapy, Pacing, and Defibrillation in Heart Failure (COMPANION) Investigators Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 2004;350:2140–50.PubMedCrossRefGoogle Scholar
  9. 9.
    Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger, et al. Cardiac Resynchronization-Heart Failure (CARE-HF) Study Investigators. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 2005;352:1539–49.PubMedCrossRefGoogle Scholar
  10. 10.
    Leclercq C, Faris O, Tunin R, Johnson J, Kato R, Evans F, et al. Systolic improvement and mechanical resynchronization does not require electrical synchrony in the dilated failing heart with left bundle-branch block. Circulation 2002;106:1760–3.PubMedCrossRefGoogle Scholar
  11. 11.
    Achilli A, Sassara M, Ficili S, Pontillo D, Achilli P, Alessi C, et al. Long-term effectiveness of cardiac resynchronization therapy in patients with refractory heart failure and “narrow” QRS. J Am Coll Cardiol 2003;42:2117–24.PubMedCrossRefGoogle Scholar
  12. 12.
    Brecker SJ, Xiao HB, Sparrow J, Gibson DG. Effects of dual chamber pacing with short atrioventricular delay in dilated cardiomyopathy. Lancet 1992;340:1308–12.PubMedCrossRefGoogle Scholar
  13. 13.
    Bax JJ, Abraham T, Barold SS, Breithardt OA, Fung JW, Garrigue S, et al. Cardiac resynchronization therapy: part 1—issues before device implantation. J Am Coll Cardiol 2005;46:2153–67.PubMedCrossRefGoogle Scholar
  14. 14.
    Adam WE, Tarkowska A, Bitter F, Stauch M, Geffers H: Equilibrium (gated) radionuclide ventriculography. Cardiovasc Radiol 1979;2:161–3.PubMedCrossRefGoogle Scholar
  15. 15.
    Links JM, Douglass KH, Wagner HN Jr. Patterns of ventricular emptying by Fourier analysis of gated blood-pool studies. J Nucl Med 1980;21:978–82.PubMedGoogle Scholar
  16. 16.
    Botvinick EH, Frais MA, Shosa DW, O’Connell JW, Pachec-Alvarez JA, Scheinman M, et al. An accurate means of detecting and characterizing abnormal patterns of ventricular activation by phase image analysis. Am J Cardiol 1982;50:289–98.PubMedCrossRefGoogle Scholar
  17. 17.
    Links JM, Raichlen JS, Wagner HN Jr, Reid PR. Assessment of the site of ventricular activation by Fourier analysis of gated blood-pool studies. J Nucl Med 1985;26:27–32.PubMedGoogle Scholar
  18. 18.
    Somsen GA, Verberne HJ, Burri H, Ratib O, Righetti A. Ventricular mechanical dyssynchrony and resynchronization therapy in heart failure: a new indication for Fourier analysis of gated blood-pool radionuclide ventriculography. Nucl Med Commun 2006;27:105–12.PubMedCrossRefGoogle Scholar
  19. 19.
    Casset-Senon D, Philippe L, Babuty D, Eder V, Fauchier L, Fauchier JP, et al. Diagnosis of arrythmogenic right ventricular cardiomyopathy by Fourier analysis of gated blood pool singlephoton emission tomography. Am J Cardiol 1998;82:1399–404.PubMedCrossRefGoogle Scholar
  20. 20.
    Neumann DR, Go, RT, Myers BA, Macintyre WJ, Chen EQ, Cook SA. Parametric phase display for biventricular function from gated cardiac blood pool single-photon emission tomography. Eur J Nucl Med 1993;20:1108–11.PubMedCrossRefGoogle Scholar
  21. 21.
    Graf G, Mester J, Clausen M, Henze E, Bitter F, Heidenreich P, et al. Reconstruction of Fourier coefficients: a fast method to get polar amplitude and phase images of gated SPECT. J Nucl Med 1990;31:1856–61.PubMedGoogle Scholar
  22. 22.
    Mate E, Mester J, Csermay L, Kuba A, Madani S, Makay A. Three-dimensional presentation of the Fourier amplitude and phase: a fast display method for gated cardiac blood-pool SPECT. J Nucl Med 1992;33:458–62.PubMedGoogle Scholar
  23. 23.
    Botvinick EH, O’Connell WO, Kadkade PP, Glickman SL, Dae MW, Cohen TJ, et al. Potential added value of three-dimensional reconstruction and display of single photon emission computed tomographic gated blood pool images. J Nucl Cardiol 1998;5: 245–55.PubMedCrossRefGoogle Scholar
  24. 24.
    Chen J, Garcia EV, Folks RD, Cooke CD, Faber TL, Tauxe EL, et al. Onset of left ventricular contraction determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony. J Nucl Cardiol 2005;6:687–95.CrossRefGoogle Scholar
  25. 25.
    Abramowitz M, Stegun IA, editors. Handbook of mathematical functions with formulas, graphs, and mathematical tables. 9th ed. New York: Dover, 1972. p 928.Google Scholar
  26. 26.
    Pitzalis MV, Iacoviello M, Romito R, Massan F, Rizzon B, Luzzi G, et al. Cardiac resynchronization therapy tailored by echocardiographic evaluation of ventricular asynchrony. J Am Coll Cardiol 2002;40:1615–22.PubMedCrossRefGoogle Scholar
  27. 27.
    Pitzalis MV, Iacoviello M, Romito R, Guida P, De Tommasi E, Luzzi G, et al. Ventricular asynchrony predicts a better outcome in patients with chronic heart failure receiving cardiac resynchronization therapy. J Am Coll Cardiol 2005;45:65–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Marcus GM, Rose E, Viloria EM, Shafer J, De Marco T, Saxon LA, et al. VENTAK CHF/CONTAK-CD Biventricular Pacing Study Investigators. Septal to posterior wall motion delay fails to predict reverse remodeling or clinical improvement in patients undergoing cardiac resynchronization therapy. J Am Coll Cardiol 2005;46:2208–14.PubMedCrossRefGoogle Scholar
  29. 29.
    Penicka M, Bartunek J, De Bruyne B, Vanderheyden M, Goethals M, De Zutter M, et al. Improvement of left ventricular function after cardiac resynchronization therapy is predicted by tissue Doppler imaging echocardiography. Circulation 2004;109:978–83PubMedCrossRefGoogle Scholar
  30. 30.
    Ansalone G, Giannantoni P, Ricci R, Trambaiolo P, Laurenti A, Fedele F, et al. Doppler myocardial imaging in patients with heart failure receiving biventricular pacing treatment. Am Heart J 2001;142:881–96.PubMedCrossRefGoogle Scholar
  31. 31.
    Garrigue S, Reuter S, Labeque JN, Jais P, Hocini M, Shah DC, et al. Usefulness of biventricular pacing in patients with congestive heart failure and right bundle branch block. Am J Cardiol 2001; 88:1436–41.PubMedCrossRefGoogle Scholar
  32. 32.
    Bordachar P, Lafitte S, Reuter S, Sanders P, Jais P, Haissaguerre M, et al. Echocardiographic parameters of ventricular dyssynchrony validation in patients with heart failure using sequential biventricular pacing. J Am Coll Cardiol 2004;44:2157–65.PubMedCrossRefGoogle Scholar
  33. 33.
    Yu CM, Chau E, Sanderson JE, Fan K, Tang MO, Fung WH, et al. Tissue Doppler echocardiographic evidence of reverse remodeling and improved synchronicity by simultaneously delaying regional contraction after biventricular pacing therapy in heart failure. Circulation 2002;105:438–45.PubMedCrossRefGoogle Scholar
  34. 34.
    Bax JJ, Marwick TH, Molhoek SG, Bleeker GB, Van Erven L, Boersma E, et al. Left ventricular dyssynchrony predicts benefit of cardiac resynchronization therapy in patients with end-stage heart failure before pacemaker implantation. Am J Cardiol 2003, 92:1238–40.PubMedCrossRefGoogle Scholar
  35. 35.
    Yu CM, Fung WH, Lin H, Zhang Q, Sanderson JE, Lau CP Predictors of left ventricular reverse remodeling after cardiac resynchronization therapy for heart failure secondary to idiopathic dilated or ischemic cardiomyopathy. Am J Cardiol 2003;91:684–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Bax JJ, Bleeker GB, Marwick TH, Molhoek SG, Boersma E, Steendijk P, et al. Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy. J Am Coll Cardiol 2004;44:1834–40.PubMedCrossRefGoogle Scholar
  37. 37.
    Notabartolo D, Merlino JD, Smith AL, De Lurgio DB, Vera FV, Easley KA, et al. Usefulness of the peak velocity difference by tissue Doppler imaging technique as an effective predictor of response to cardiac resynchronization therapy. Am J Cardiol 2004;94:817–20.PubMedCrossRefGoogle Scholar
  38. 38.
    Yu CM, Fung JW, Zhang Q, Chan CK, Chan YS, Lin H, et al. Tissue Doppler imaging is superior to strain rate imaging and post systolic shortening on the prediction of reverse remodeling in both ischemic and nonischemic heart failure after cardiac resynchronization therapy. Circulation 2004;110:66–73.PubMedCrossRefGoogle Scholar
  39. 39.
    Sogaard P, Egeblad H, Kim WY, Jensen HH, Pedersen AK, Kristensen BO, et al. Tissue Doppler imaging predicts improved systolic performance and reversed left ventricular remodeling during long-term cardiac resynchronization therapy. J Am Coll Cardiol 2002;40:723–30.PubMedCrossRefGoogle Scholar
  40. 40.
    Sogaard P, Egeblad H, Pedersen AK, Kim WY, Kristensen BO, Hansen PS, et al. Sequential versus simultaneous biventricular resynchronization for severe heart failure: evaluation by tissue Doppler imaging. Circulation 2002;106:2078–84.PubMedCrossRefGoogle Scholar
  41. 41.
    Breithardt OA, Stellbrink C, Herbots L, Claus P, Sinha AM, Bijnens B, et al. Cardiac resynchronization therapy can reverse abnormal myocardial strain distribution in patients with heart failure and left bundle branch block. J Am Coll Cardiol 2003;42:486–94.PubMedCrossRefGoogle Scholar
  42. 42.
    Sun JP, Chinchoy E, Donal E, Popovic ZB, Perlic G, Asher CR, et al. Evaluation of ventricular synchrony using novel Doppler echocardiographic indices in patients with heart failure receiving cardiac resynchronization therapy. J Am Soc Echocardiogr 2004;17:845–50.PubMedCrossRefGoogle Scholar
  43. 43.
    Popovic ZB, Grimm RA, Perlic G, Chinchoy E, Geraci M, Sun JP, et al. Noninvasive assessment of cardiac resynchronization therapy for congestive heart failure using myocardial strain and left ventricular peak power as parameters of myocardial synchrony and function. J Cardiovasc Electrophysiol 2002;13:1203–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Dohi K, Suffoletto MS, Schwartzman D, Ganz L, Pinsky MR, Gorcsan J III. Utility of echocardiographic radial strain imaging to quantify left ventricular dyssynchrony and predict acute response to cardiac resynchronization therapy. Am J Cardiol 2005;96:112–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Gorcsan J III, Kanzaki H, Bazaz R, Dohi K, Schwantzman D. Usefulness of echocardiographic tissue synchronization imaging to predict acute response to cardiac resynchronization therapy. Am J Cardiol 2004;93:1178–81.PubMedCrossRefGoogle Scholar
  46. 46.
    Yu CM, Zhang Q, Fung JW, Chan HC, Chan YS, Yip GW, et al. A novel tool to assess systolic asynchrony and identify responders of cardiac resynchronization therapy by tissue synchronization imaging. J Am Coll Cardiol 2005;45:677–84.PubMedCrossRefGoogle Scholar
  47. 47.
    Kapetanakis S, Kearney MT, Siva A, Gall N, Cooklin M, Monaghan MJ. Real-time three-dimensional echocardiography: a novel technique to quantify global left ventricular mechanical dyssynchrony. Circulation 2005;112:992–1000.PubMedCrossRefGoogle Scholar
  48. 48.
    Fauchier L, Marie O, Casset-Senon D, Babuty D, Cosnay P, Fauchier JP. Interventricular and intraventricular dyssynchrony in idiopathic dilated cardiomyopathy: a prognostic study with Fourier phase analysis of radionuclide angioscintigraphy. J Am Coll Cardiol 2002;40:2022–30.PubMedCrossRefGoogle Scholar
  49. 49.
    Toussaint JF, Lavergne T, Ollitraut J, Hignette C, Darondel JM De Dieuleveult B, et al. Biventricular pacing in severe heart failure patients reverses electromechanical dyssynchronization from apex to base. Pacing Clin Electrophysiol 2000;23:1731–4.PubMedGoogle Scholar
  50. 50.
    Kerwin WF, Botvinick EH, O’Connell JW, Merrick SH, DeMarco T, Chatterjee K, et al. Ventricular contraction abnormalities in dilated cardiomyopathy: effect of biventricular pacing to correct interventricular dyssynchrony. J Am Coll Cardiol 2000;35:1221–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Le Rest C, Couturier O, Turzo A, Guillo P, Bizais Y, Etienne Y, et al. Use of left ventricular pacing in heart failure: evaluation by gated blood pool imaging. J Nucl Cardiol 1999;6:651–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Bleeker GB, Kaandorp TA, Lamb HJ, Boersma E, Steendijk P, De Roos A, et al. Effect of posterolateral scar tissue on clinical and echocardiographic improvement after cardiac resynchronization therapy. Circulation 2006;113:969–76.PubMedCrossRefGoogle Scholar
  53. 53.
    Gremillet E, Champailler A, Soler C. Fourier temporal interpolation improves electrocardiograph-gated myocardial perfusion SPECT. J Nucl Med 2005;46:1769–74.PubMedGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2007

Authors and Affiliations

  • Mark A. Trimble
    • 1
    • 3
  • Salvador Borges-Neto
    • 1
    • 2
    • 3
    Email author
  • Stuart Smallhelser
    • 5
  • Ji Chen
    • 6
  • Emily F. Honeycutt
    • 3
  • Linda K. Shaw
    • 3
  • Jaekyeong Heo
    • 4
  • Robert A. Pagnanelli
    • 2
  • E. Lindsey Tauxe
    • 4
  • Ernest V. Garcia
    • 6
  • Fabio Esteves
    • 6
  • Frank Seghatol-Eslami
    • 4
  • G. Neal Kay
    • 5
  • Ami E. Iskandrian
    • 5
  1. 1.Division of Cardiovascular Disease, Department of MedicineDuke University Medical CenterDurham
  2. 2.Department of RadiologyDuke University Medical CenterDurham
  3. 3.Duke Clinical Research InstituteDuke University Medical CenterDurham
  4. 4.Department of RadiologyUniversity of Alabama at BirminghamBirmingham
  5. 5.Division of CardiologyUniversity of Alabama at BirminghamBirmingham
  6. 6.Department of RadiologyEmory UniversityAtlanta

Personalised recommendations