Advertisement

Journal of Nuclear Cardiology

, Volume 12, Issue 2, pp 179–185 | Cite as

TI-201 washout rate in remote normal regions in patients with prior myocardial infarction and left ventricular remodeling

  • Toshihiko Goto
  • Nobuyuki Ohte
  • Hiromichi Miyabe
  • Seiji Mukai
  • Seiichiro Sakata
  • Junichiro Hayano
  • Genjiro Kimura
Original Article

Abstract

Background

Myocardial characteristics of remote normal regions in patients with myocardial infarction (MI) and left ventricular (LV) remodeling have not been fully elucidated. Thus, we investigated this issue from the viewpoint of myocardial Tl-201 dynamics.

Methods and Results

In 14 patients with prior anterior MI, 10 with inferior MI, and 14 age-matched patients with atypical chest pain served as controls; exercise stress Tl-201 SPECT and cardiac catheterization were performed. Tl-201 washout rate was calculated for 8 myocardial segments, and LV end-diastolic volume index was obtained as a parameter of LV remodeling. LV end-diastolic volume index was greater in anterior MI patients than in control patients; in contrast, no significant difference was observed between inferior MI patients and control patients. The washout rate in remote normal regions was significantly less in anterior MI patients than in the corresponding segments in control patients (39.8% ± 8.7% vs 48.4% ± 4.4%, P <.01). There was no significant difference between inferior MI patients and control patients (43.6% ± 6.9% vs 47.8% ± 4.5%).

Conclusions

Reduced Tl-201 washout rates in remote normal regions are found in patients with anterior MI and LV remodeling. Subclinical myocardial ischemia during exercise in remote normal regions exists and may be related to the pathologic condition of such LV walls.

Key Words

Thallium 201 myocardial perfusion imaging single photon emission computed tomography left ventricular function myocardial infarction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pfeffer MA, Braunwald E. Ventricular remodeling after myocar- dial infarction. Experimental observations and clinical implications. Circulation 1990;81:1161–72.PubMedGoogle Scholar
  2. 2.
    Pfeffer JM, Pfeffer MA, Fletcher PJ, Braunwald E. Progressive ventricular remodeling in rat with myocardial infarction. Am J Physiol 1991;260:H1406–14.PubMedGoogle Scholar
  3. 3.
    Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 2000; 101:2981–8.PubMedGoogle Scholar
  4. 4.
    Tomanek RJ. Response of the coronary vasculature to myocardial hypertrophy. J Am Coll Cardiol 1990;15:528–33.PubMedCrossRefGoogle Scholar
  5. 5.
    Kalkman EA, Bilgin YM, van Haren P, van Suylen RJ, Saxena PR,Schoemaker RG. Determinants of coronary reserve in rats subjected to coronary artery ligation or aortic banding. Cardiovasc Res 1996;32:1088–95.PubMedCrossRefGoogle Scholar
  6. 6.
    Braunwald E. Control of myocardial oxygen consumption: physiologic and clinical considerations. Am J Cardiol 1971;27:416–32.PubMedCrossRefGoogle Scholar
  7. 7.
    Porenta G, Cherry S, Czemin J, Brunken R, Kuhle W, Hashimoto T, et al. Noninvasive determination of myocardial blood flow, oxygen consumption and efficiency in normal humans by carbon-11 acetate positron emission tomography imaging. Eur J Nucl Med 1999;26:1465–74.PubMedCrossRefGoogle Scholar
  8. 8.
    Ohte N, Kurokawa K, Iida A, Narita H, Akita S, Yajima K, et al.. Myocardial oxidative metabolism in remote normal regions in the left ventricles with remodeling after myocardial infarction: effect of beta-adrenoceptor blockers. J Nucl Med 2002;43:780–5.PubMedGoogle Scholar
  9. 9.
    Pohost GM, Alpert NM, Ingwall JS, Strauss HW. Thallium redistribution: mechanisms and clinical utility. Semin Nucl Med 1980;10:70–93.PubMedCrossRefGoogle Scholar
  10. 10.
    Garcia E, Maddahi J, Berman D, Waxman A.. Space/time quanti- tation of thallium-201 myocardial scintigraphy. J Nucl Med 1981; 22:309–17.PubMedGoogle Scholar
  11. 11.
    Watson DD, Campbell NP, Read EK, Gibson RS, Teates CD, Beller GA, et al. Spatial and temporal quantitation of plane thallium myocardial images. J Nucl Med 1981;22:577–84.PubMedGoogle Scholar
  12. 12.
    Berger BC, Watson DD, Taylor GJ, Craddock GB, Martin RP, Teates CD, et al. Quantitative thallium-201 exercise scintigraphy for detection of coronary artery disease. J Nucl Med 1981;22:585- 93.PubMedGoogle Scholar
  13. 13.
    Abdulla A, Maddahi J, Garcia E, Rozanski A, Swan HJ, Berman DS. Slow regional clearance of myocardial thallium-201 in the absence of perfusion defect: contribution to detection of individual coronary artery stenoses and mechanism for occurrence. Circula- tion 1985;71:72–9.Google Scholar
  14. 14.
    Chapman CB, Baker O, Reynolds J, Bonte FJ. Use of biplane cinefluorography for measurement of ventricle volume. Circulation 1958;18:1105–17.PubMedGoogle Scholar
  15. 15.
    Holtz J, Restorff WV, Bard P, Bassenge E. Transmural distribution of myocardial blood flow and of coronary reserve in canine left ventricular hypertrophy. Basic Res Cardiol 1977;72:286–92.PubMedCrossRefGoogle Scholar
  16. 16.
    Waller C, Hiller KH, Kahler E, Hu K, Nahrendorf M, Voll S, et al. Serial magnetic resonance imaging of micro vascular remodeling in the infarcted rat heart. Circulation 2001;103:1564–9.PubMedGoogle Scholar
  17. 17.
    Schwartzkopff B, Motz W, Frenzel H, Vogt M, Knauer S, Strauer B. Structural and functional alterations of the intramyocardial coronary arterioles in patients with arterial hypertension. Circulation 1993;88:993–1003.PubMedGoogle Scholar
  18. 18.
    Tanaka M, Fujiwara H, Onodera T. Quantitative analysis of narrowings of intramyocardial small arteries in normal hearts, hypertensive hearts, and hearts with hypertrophic cardiomyopathy. Circulation 1987;75:1130–9.PubMedGoogle Scholar
  19. 19.
    Uren NG, Crake T, Lefroy DC, de Silva R, Davies GJ, Maseri A. Reduced coronary vasodilator function in infarcted and normal myocardium after myocardial infarction. N Engl J Med 1994;331:222–77.PubMedCrossRefGoogle Scholar
  20. 20.
    Gimelli A, Schneider-Eicke J, Neglia D, Sambuceti G, Giorgetti A, Bigalli G, et al. Homogeneously reduced versus regionally im- paired myocardial blood flow in hypertensive patients: two different patterns of myocardial perfusion associated with degree of hypertrophy. J Am Coll Cardiol 1998;31:366–73.PubMedCrossRefGoogle Scholar
  21. 21.
    Ohte N, Hashimoto T, Banno T, Narita H, Kobayashi K, Akita S, et al. Clinical significance of reverse redistribution on 24-hour delayed imaging of exercise thallium-201 myocardial SPECT: comparison with myocardial fluorine-18-FDG-PET imaging and left ventricular wall motion. J Nucl Med 1995;36:86–92.PubMedGoogle Scholar
  22. 22.
    Ohte N, Narita H, Miyabe H, Takada N, Goto T, Mizuno H, et al. Evaluation of whole left ventricular systolic performance and local myocardial systolic function in patients with prior myocardial infarction using global long-axis myocardial strain. Am J Cardiol 2004;94:929–32.PubMedCrossRefGoogle Scholar
  23. 23.
    Narahara KA, Thompson CJ, Hazen JF, Brizendine M, Mena I. The effect of beta blockade on single photon emission computed tomographic (SPECT) thallium-201 images in patients with coronary disease. Am Heart J 1989;117:1030–5.PubMedCrossRefGoogle Scholar
  24. 24.
    The SOLVD Investigators. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fraction. N Engl J Med 1992;327:685–91.Google Scholar

Copyright information

© American Society of Nuclear Cardiology 2005

Authors and Affiliations

  • Toshihiko Goto
    • 1
  • Nobuyuki Ohte
    • 1
  • Hiromichi Miyabe
    • 1
  • Seiji Mukai
    • 1
  • Seiichiro Sakata
    • 1
  • Junichiro Hayano
    • 1
  • Genjiro Kimura
    • 1
  1. 1.Department of Internal Medicine and PathophysiologyNagoya City University Graduate School of Medical SciencesNagoya CityJapan

Personalised recommendations