Journal of Nuclear Cardiology

, Volume 11, Issue 5, pp 603–616

Assessment of cardiac sympathetic neuronal function using PET imaging

Major Achievements In Nuclear Cardiology: X

Abstract

The autonomic nervous system plays a key role for regulation of cardiac performance, and the importance of alterations of innervation in the pathophysiology of various heart diseases has been increasingly emphasized. Nuclear imaging techniques have been established that allow for global and regional investigation of the myocardial nervous system. The guanethidine analog iodine 123 metaiodobenzylguanidine (MIBG) has been introduced for scintigraphic mapping of presynaptic sympathetic innervation and is available today for imaging on a broad clinical basis. Not much later than MIBG, positron emission tomography (PET) has also been established for characterizing the cardiac autonomic nervous system. Although PET is methodologically demanding and less widely available, it provides substantial advantages. High spatial and temporal resolution along with routinely available attenuation correction allows for detailed definition of tracer kinetics and makes noninvasive absolute quantification a reality. Furthermore, a series of different radiolabeled catecholamines, catecholamine analogs, and receptor ligands are available. Those are often more physiologic than MIBG and well understood with regard to their tracer physiologic properties. PET imaging of sympathetic neuronal function has been successfully applied to gain mechanistic insights into myocardial biology and pathology. Available tracers allow dissection of processes of presynaptic and postsynaptic innervation contributing to cardiovascular disease. This review summarizes characteristics of currently available PET tracers for cardiac neuroimaging along with the major findings derived from their application in health and disease. (J Nucl Cardiol 2004;11:603-16.)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pierpont GL, DeMaster EG, Reynolds S, Pederson J, Cohn JN. Ventricular myocardial catecholamines in primates. J Lab Clin Med 1985;106:205–10.PubMedGoogle Scholar
  2. 2.
    Francis GS. Modulation of peripheral sympathetic nerve transmission. J Am Coll Cardiol 1988;12:250–4.PubMedCrossRefGoogle Scholar
  3. 3.
    Jaques S Jr, Tobes MC, Sisson JC. Sodium dependency of uptake of norepinephrine and m-iodobenzylguanidine into cultured human pheochromocytoma cells: evidence for uptake-one. Cancer Res 1987;47:3920–8.PubMedGoogle Scholar
  4. 4.
    Schomig A. Catecholamines in myocardial ischemia. Systemic and cardiac release. Circulation 1990;82:II13–22.PubMedGoogle Scholar
  5. 5.
    Russ H, Gliese M, Sonna J, Schomig E. The extraneuronal transport mechanism for noradrenaline (uptake2) avidly transports 1-methyl-4-phenylpyridinium (MPP+). Naunyn Schmiedebergs Arch Pharmacol 1992;346:158–65.PubMedCrossRefGoogle Scholar
  6. 6.
    Salt PJ. Inhibition of noradrenaline uptake 2 in the isolated rat heart by steroids, clonidine and methoxylated phenylethylamines. Eur J Pharmacol 1972;20:329–40.PubMedCrossRefGoogle Scholar
  7. 7.
    Bristow MR. Changes in myocardial and vascular receptors in heart failure. J Am Coll Cardiol 1993;22:61A-71A.PubMedGoogle Scholar
  8. 8.
    Riemann B, Schafers M, Law MP, Wichter T, Schober O. Radioligands for imaging myocardial alpha- and beta-adrenoceptors. Nuklearmedizin 2003;42:4–9.PubMedGoogle Scholar
  9. 9.
    Rosenspire KC, Haka MS, Van Dort ME, et al. Synthesis and preliminary evaluation of carbon-11-meta-hydroxyephedrine: a false transmitter agent for heart neuronal imaging. J Nucl Med 1990;31:1328–34.PubMedGoogle Scholar
  10. 10.
    DeGrado TR, Hutchins GD, Toorongian SA, Wieland DM, Schwaiger M. Myocardial kinetics of carbon-11-meta-hydroxyephedrine: retention mechanisms and effects of norepinephrine. J Nucl Med 1993;34:1287–93.PubMedGoogle Scholar
  11. 11.
    Schwaiger M, Kalff V, Rosenspire K, et al. Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography. Circulation 1990;82:457–64.PubMedGoogle Scholar
  12. 12.
    Raffel DM, Corbett JR, del Rosario RB, et al. Clinical evaluation of carbon-11-phenylephrine: MAO-sensitive marker of cardiac sympathetic neurons. J Nucl Med 1996;37:1923–31.PubMedGoogle Scholar
  13. 13.
    Caldwell JH, Kroll K, Li Z, et al. Quantitation of presynaptic cardiac sympathetic function with carbon-11-meta-hydroxyephedrine. J Nucl Med 1998;39:1327–34.PubMedGoogle Scholar
  14. 14.
    Chakraborty PK, Gildersleeve DL, Jewett DM, et al. High yield synthesis of high specific activity R-(-)-[11C]epinephrine for routine PET studies in humans. Nucl Med Biol 1993;20:939–44.PubMedCrossRefGoogle Scholar
  15. 15.
    Nguyen NT, DeGrado TR, Chakraborty P, Wieland DM, Schwaiger M. Myocardial kinetics of carbon-11-epinephrine in the isolated working rat heart. J Nucl Med 1997;38:780–5.PubMedGoogle Scholar
  16. 16.
    Munch G, Nguyen NT, Nekolla S, et al. Evaluation of sympathetic nerve terminals with [(11)C] [(11)C]epinephrine and [(11)C] [(11)C]hydroxyephedrine and positron emission tomography. Circulation 2000;101:516–23.PubMedGoogle Scholar
  17. 17.
    Langer O, Halldin C. PET and SPET tracers for mapping the cardiac nervous system. Eur J Nucl Med Mol Imaging 2002;29: 416–34.PubMedCrossRefGoogle Scholar
  18. 18.
    Goldstein DS, Chang PC, Eisenhofer G, et al. Positron emission tomographic imaging of cardiac sympathetic innervation and function. Circulation 1990;81:1606–21.PubMedGoogle Scholar
  19. 19.
    Goldstein DS, Eisenhofer G, Dunn BB, et al. Positron emission tomographic imaging of cardiac sympathetic innervation using 6-[18F]fluorodopamine: initial findings in humans. J Am Coll Cardiol 1993;22:1961–71.PubMedGoogle Scholar
  20. 20.
    Del Rosario RB, Jung YW, Caraher J, Chakraborty PK, Wieland DM. Synthesis and preliminary evaluation of [11C]-(-)-phenylephrine as a functional heart neuronal PET agent. Nucl Med Biol 1996;23:611–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Raffel DM, Wieland DM. Influence of vesicular storage and monoamine oxidase activity on [11C]phenylephrine kinetics: studies in isolated rat heart. J Nucl Med 1999;40:323–30.PubMedGoogle Scholar
  22. 22.
    Wieland DM, Rosenspire KC, Hutchins GD, et al. Neuronal mapping of the heart with 6-[18F]fluorometaraminol. J Med Chem 1990;33:956–64.PubMedCrossRefGoogle Scholar
  23. 23.
    Langer O, Dolle F, Valette H, et al. Synthesis of high-specificradioactivity 4- and 6-[18F]fluorometaraminol-PET tracers for the adrenergic nervous system of the heart. Bioorg Med Chem 2001; 9:677–94.PubMedCrossRefGoogle Scholar
  24. 24.
    Vaidyanathan G, Affleck DJ, Zalutsky MR. Validation of 4- [fluorine-18]fluoro-3-iodobenzylguanidine as a positron-emitting analog of MIBG. J Nucl Med 1995;36:644–50.PubMedGoogle Scholar
  25. 25.
    Raffel D, Loc’h C, Mardon K, Maziere B, Syrota A. Kinetics of the norepinephrine analog [76Br]-meta-bromobenzylguanidine in isolated working rat heart. Nucl Med Biol 1998;25:1–16.PubMedCrossRefGoogle Scholar
  26. 26.
    Berry CR, Garg PK, Zalutsky MR, Coleman RE, DeGrado TR. Uptake and retention kinetics of para-fluorine-18-fluorobenzylguanidine in isolated rat heart. J Nucl Med 1996;37:2011–6.PubMedGoogle Scholar
  27. 27.
    Law MP. Demonstration of the suitability of CGP 12177 for in vivo studies of beta-adrenoceptors. Br J Pharmacol 1993;109: 1101–9.PubMedGoogle Scholar
  28. 28.
    Delforge J, Syrota A, Lancon JP, et al. Cardiac beta-adrenergic receptor density measured in vivo using PET, CGP 12177, and a new graphical method. J Nucl Med 1991;32:739–48.PubMedGoogle Scholar
  29. 29.
    Elsinga PH, van Waarde A, Jaeggi KA, et al. Synthesis and evaluation of (S)-4-(3-(2’-[11C]isopropylamino)-2-hydroxypropoxy)-2Hbenzimidazol- 2-one ((S)-[11C] CGP 12388) and S)-4-(3-((1’-[18F]-fluoroisopropyl)amino)-2-hydroxypropoxy)-2H-benzimidazol-2-one ((S)-[18F]fluoro-CGP 12388) for visualization of beta-adrenoceptors with positron emission tomography. J Med Chem 1997;40:3829–35.PubMedCrossRefGoogle Scholar
  30. 30.
    Momose M, Reder S, Raffel DM, et al. Evaluation of cardiac beta-adrenoreceptors in the isolated perfused rat heart using (S)-11C-CGP12388. J Nucl Med 2004;45:471–7.PubMedGoogle Scholar
  31. 31.
    Doze P, Elsinga PH, van Waarde A, et al. Quantification of beta-adrenoceptor density in the human heart with (S)-[11C]CGP 12388 and a tracer kinetic model. Eur J Nucl Med Mol Imaging 2002;29:295–304.PubMedCrossRefGoogle Scholar
  32. 32.
    Law MP, Osman S, Pike VW, et al. Evaluation of [11C]GB67, a novel radioligand for imaging myocardial alpha 1-adrenoceptors with positron emission tomography. Eur J Nucl Med 2000;27:7–17.PubMedCrossRefGoogle Scholar
  33. 33.
    Van Waarde A, Elsinga PH, Brodde OE, Visser GM, Vaalburg W. Myocardial and pulmonary uptake of S-1’-[18F]fluorocarazolol in intact rats reflects radioligand binding to beta-adrenoceptors. Eur J Pharmacol 1995;272:159–68.PubMedCrossRefGoogle Scholar
  34. 34.
    Van Waarde A, Meeder JG, Blanksma PK, et al. Suitability of CGP-12177 and CGP-26505 for quantitative imaging of betaadrenoceptors. Int J Rad Appl Instrum B 1992;19:711–8.PubMedGoogle Scholar
  35. 35.
    Visser TJ, van der Wouden EA, Van Waarde A, et al. Synthesis and biodistribution of [11c]procaterol, a beta2-adrenoceptor agonist for positron emission tomography. Appl Radiat Isot 2000;52:857–63.PubMedCrossRefGoogle Scholar
  36. 36.
    Riemann B, Law MP, Kopka K, et al. High non-specific binding of the beta(1)-selective radioligand 2-(125)I-ICI-H. Nuklearmedizin 2003;42:173–80.PubMedGoogle Scholar
  37. 37.
    DeGrado TR, Mulholland GK, Wieland DM, Schwaiger M. Evaluation of (-)[18F]fluoroethoxybenzovesamicol as a new PET tracer of cholinergic neurons of the heart. Nucl Med Biol 1994; 21:189–95.PubMedCrossRefGoogle Scholar
  38. 38.
    Syrota A, Paillotin G, Davy JM, Aumont MC. Kinetics of in vivo binding of antagonist to muscarinic cholinergic receptor in the human heart studied by positron emission tomography. Life Sci 1984;35:937–45.PubMedCrossRefGoogle Scholar
  39. 39.
    Delforge J, Le Guludec D, Syrota A, et al. Quantification of myocardial muscarinic receptors with PET in humans. J Nucl Med 1993;34:981–91.PubMedGoogle Scholar
  40. 40.
    Delahaye N, Le Guludec D, Dinanian S, et al. Myocardial muscarinic receptor upregulation and normal response to isoproterenol in denervated hearts by familial amyloid polyneuropathy. Circulation 2001;104:2911–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Le Guludec D, Delforge J, Syrota A, et al. In vivo quantification of myocardial muscarinic receptors in heart transplant patients. Circulation 1994;90:172–8.PubMedGoogle Scholar
  42. 42.
    Le Guludec D, Cohen-Solal A, Delforge J, et al. Increased myocardial muscarinic receptor density in idiopathic dilated cardiomyopathy: an in vivo PET study. Circulation 1997;96:3416–22.PubMedGoogle Scholar
  43. 43.
    Mancini D. Surgically denervated cardiac transplant. Rewired or permanently unplugged? Circulation 1997;96:6–8.PubMedGoogle Scholar
  44. 44.
    Schwaiger M, Hutchins GD, Kalff V, et al. Evidence for regional catecholamine uptake and storage sites in the transplanted human heart by positron emission tomography. J Clin Invest 1991;87: 1681–90.PubMedCrossRefGoogle Scholar
  45. 45.
    Bengel FM, Ueberfuhr P, Ziegler SI, et al. Serial assessment of sympathetic reinnervation after orthotopic heart transplantation. A longitudinal study using PET and C-11 hydroxyephedrine. Circulation 1999;99:1866–71.PubMedGoogle Scholar
  46. 46.
    Uberfuhr P, Ziegler S, Schwaiblmair M, Reichart B, Schwaiger M. Incomplete sympathic reinnervation of the orthotopically transplanted human heart: observation up to 13 years after heart transplantation. Eur J Cardiothorac Surg 2000;17:161–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Odaka K, von Scheidt W, Ziegler SI, et al. Reappearance of cardiac presynaptic sympathetic nerve terminals in the transplanted heart: correlation between PET using (11)C-hydroxyephedrine and invasively measured norepinephrine release. J Nucl Med 2001;42:1011–6.PubMedGoogle Scholar
  48. 48.
    Uberfuhr P, Frey AW, Ziegler S, Reichart B, Schwaiger M. Sympathetic reinnervation of sinus node and left ventricle after heart transplantation in humans: regional differences assessed by heart rate variability and positron emission tomography. J Heart Lung Transplant 2000;19:317–23.PubMedCrossRefGoogle Scholar
  49. 49.
    Ziegler SI, Frey AW, Uberfuhr P, et al. Assessment of myocardial reinnervation in cardiac transplants by positron emission tomography: functional significance tested by heart rate variability. Clin Sci (Lond) 1996;91(Suppl):126–8.Google Scholar
  50. 50.
    Bengel FM, Ueberfuhr P, Hesse T, et al. Clinical determinants of ventricular sympathetic reinnervation after orthotopic heart transplantation. Circulation 2002;106:831–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Di Carli MF, Tobes MC, Mangner T, et al. Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med 1997;336:1208–15.PubMedCrossRefGoogle Scholar
  52. 52.
    Bengel FM, Ueberfuhr P, Ziegler SI, et al. Non-invasive assessment of the effect of cardiac sympathetic innervation on metabolism of the human heart. Eur J Nucl Med 2000;27:1650–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Bengel FM, Ueberfuhr P, Schiepel N, et al. Myocardial efficiency and sympathetic reinnervation after orthotopic heart transplantation: a noninvasive study with positron emission tomography. Circulation 2001;103:1881–6.PubMedGoogle Scholar
  54. 54.
    Bengel FM, Ueberfuhr P, Schiepel N, et al. Effect of sympathetic reinnervation on cardiac performance after heart transplantation. N Engl J Med 2001;345:731–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Schwaiger M, Guibourg H, Rosenspire K, et al. Effect of regional myocardial ischemia on sympathetic nervous system as assessed by fluorine-18-metaraminol. J Nucl Med 1990;31:1352–7.PubMedGoogle Scholar
  56. 56.
    Allman KC, Wieland DM, Muzik O, et al. Carbon-11 hydroxyephedrine with positron emission tomography for serial assessment of cardiac adrenergic neuronal function after acute myocardial infarction in humans. J Am Coll Cardiol 1993;22:368–75.PubMedGoogle Scholar
  57. 57.
    Bulow HP, Stahl F, Lauer B, et al. Alterations of myocardial presynaptic sympathetic innervation in patients with multi-vessel coronary artery disease but without history of myocardial infarction. Nucl Med Commun 2003;24:233–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Fallen EL, Coates G, Nahmias C, et al. Recovery rates of regional sympathetic reinnervation and myocardial blood flow after acute myocardial infarction. Am Heart J 1999;137:863–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Bristow MR. The autonomic nervous system in heart failure. N Engl J Med 1984;311:850–1.PubMedGoogle Scholar
  60. 60.
    Merlet P, Delforge J, Syrota A, et al. Positron emission tomography with 11C CGP-12177 to assess beta-adrenergic receptor concentration in idiopathic dilated cardiomyopathy. Circulation 1993;87:1169–78.PubMedGoogle Scholar
  61. 61.
    Hartmann F, Ziegler S, Nekolla S, et al. Regional patterns of myocardial sympathetic denervation in dilated cardiomyopathy: an analysis using carbon-11 hydroxyephedrine and positron emission tomography. Heart 1999;81:262–70.PubMedGoogle Scholar
  62. 62.
    Ungerer M, Hartmann F, Karoglan M, et al. Regional in vivo and in vitro characterization of autonomic innervation in cardiomyopathic human heart. Circulation 1998;97:174–80.PubMedGoogle Scholar
  63. 63.
    Ungerer M, Weig HJ, Kubert S, et al. Regional pre- and postsynaptic sympathetic system in the failing human heart-regulation of beta ARK-1. Eur J Heart Fail 2000;2:23–31.PubMedCrossRefGoogle Scholar
  64. 64.
    Vesalainen RK, Pietila M, Tahvanainen KU, et al. Cardiac positron emission tomography imaging with [11C]hydroxyephedrine, a specific tracer for sympathetic nerve endings, and its functional correlates in congestive heart failure. Am J Cardiol 1999;84:568–74.PubMedCrossRefGoogle Scholar
  65. 65.
    Bengel FM, Permanetter B, Ungerer M, Nekolla SG, Schwaiger M. Relationship between altered sympathetic innervation, oxidative metabolism and contractile function in the cardiomyopathic human heart; a non-invasive study using positron emission tomography. Eur Heart J 2001;22:1594–600.PubMedCrossRefGoogle Scholar
  66. 66.
    Bengel FM, Permanetter B, Ungerer M, Nekolla SG, Schwaiger M. Alterations of the sympathetic nervous system and metabolic performance of the cardiomyopathic heart. Eur J Nucl Med Mol Imaging 2002;29:198–202.PubMedCrossRefGoogle Scholar
  67. 67.
    Pietila M, Malminiemi K, Ukkonen H, et al. Reduced myocardial carbon-11 hydroxyephedrine retention is associated with poor prognosis in chronic heart failure. Eur J Nucl Med 2001;28:373–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Pietila M, Malminiemi K, Vesalainen R, et al. Exercise training in chronic heart failure: beneficial effects on cardiac (11)Chydroxyephedrine PET, autonomic nervous control, and ventricular repolarization. J Nucl Med 2002;43:773–9.PubMedGoogle Scholar
  69. 69.
    Schafers M, Dutka D, Rhodes CG, et al. Myocardial presynaptic and postsynaptic autonomic dysfunction in hypertrophic cardiomyopathy. Circ Res 1998;82:57–62.PubMedGoogle Scholar
  70. 70.
    Li ST, Tack CJ, Fananapazir L, Goldstein DS. Myocardial perfusion and sympathetic innervation in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 2000;35:1867–73.PubMedCrossRefGoogle Scholar
  71. 71.
    Calkins H, Allman K, Bolling S, et al. Correlation between scintigraphic evidence of regional sympathetic neuronal dysfunction and ventricular refractoriness in the human heart. Circulation 1993;88:172–9.PubMedGoogle Scholar
  72. 72.
    Calkins H, Lehmann MH, Allman K, Wieland D, Schwaiger M. Scintigraphic pattern of regional cardiac sympathetic innervation in patients with familial long QT syndrome using positron emission tomography. Circulation 1993;87:1616–21.PubMedGoogle Scholar
  73. 73.
    Mazzadi AN, Andre-Fouet X, Duisit J, et al. Heterogeneous cardiac retention of 11C-hydroxyephedrine in genotyped long QT patients. A potential amplifier role for severity of the disease. Am J Physiol Heart Circ Physiol 2003;285:H1286–93.PubMedGoogle Scholar
  74. 74.
    Schafers M, Lerch H, Wichter T, et al. Cardiac sympathetic innervation in patients with idiopathic right ventricular outflow tract tachycardia. J Am Coll Cardiol 1998;32:181–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Wichter T, Schafers M, Rhodes CG, et al. Abnormalities of cardiac sympathetic innervation in arrhythmogenic right ventricular cardiomyopathy: quantitative assessment of presynaptic norepinephrine reuptake and postsynaptic beta-adrenergic receptor density with positron emission tomography. Circulation 2000;101:1552–8.PubMedGoogle Scholar
  76. 76.
    Allman KC, Stevens MJ, Wieland DM, et al. Noninvasive assessment of cardiac diabetic neuropathy by carbon-11 hydroxyephedrine and positron emission tomography. J Am Coll Cardiol 1993;22:1425–32.PubMedGoogle Scholar
  77. 77.
    Stevens MJ, Raffel DM, Allman KC, et al. Cardiac sympathetic dysinnervation in diabetes: implications for enhanced cardiovascular risk. Circulation 1998;98:961–8.PubMedGoogle Scholar
  78. 78.
    Stevens MJ, Raffel DM, Allman KC, Schwaiger M, Wieland DM. Regression and progression of cardiac sympathetic dysinnervation complicating diabetes: an assessment by C-11 hydroxyephedrine and positron emission tomography. Metabolism 1999;48:92–101.PubMedCrossRefGoogle Scholar
  79. 79.
    Schmid H, Forman LA, Cao X, Sherman PS, Stevens MJ. Heterogeneous cardiac sympathetic denervation and decreased myocardial nerve growth factor in streptozotocin-induced diabetic rats: implications for cardiac sympathetic dysinnervation complicating diabetes. Diabetes 1999;48:603–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Stevens MJ, Dayanikli F, Raffel DM, et al. Scintigraphic assessment of regionalized defects in myocardial sympathetic innervation and blood flow regulation in diabetic patients with autonomic neuropathy. J Am Coll Cardiol 1998;31:1575–84.PubMedCrossRefGoogle Scholar
  81. 81.
    Di Carli MF, Bianco-Batlles D, Landa ME, et al. Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation 1999;100:813–9.PubMedGoogle Scholar
  82. 82.
    Berding G, Schrader CH, Peschel T, et al. [N-methyl (11)C]meta- Hydroxyephedrine positron emission tomography in Parkinson’s disease and multiple system atrophy. Eur J Nucl Med Mol Imaging 2003;30:127–31.PubMedCrossRefGoogle Scholar
  83. 83.
    Goldstein DS, Holmes CS, Dendi R, Bruce SR, Li ST. Orthostatic hypotension from sympathetic denervation in Parkinson’s disease. Neurology 2002;58:1247–55.PubMedGoogle Scholar
  84. 84.
    Goldstein DS, Holmes C, Cannon RO III, Eisenhofer G, Kopin IJ. Sympathetic cardioneuropathy in dysautonomias. N Engl J Med 1997;336:696–702.PubMedCrossRefGoogle Scholar
  85. 85.
    Raffel DM, Wieland DM. Assessment of cardiac sympathetic nerve integrity with positron emission tomography. Nucl Med Biol 2001;28:541–59.PubMedCrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2004

Authors and Affiliations

  1. 1.Nuklearmedizinische Klinik der Technischen Universität MünchenMunichGermany

Personalised recommendations