Advertisement

First insights into the population genetic structure and the phylogeographic status of the Mehely’s horseshoe bat Rhinolophus mehelyi (Chiroptera: Rhinolophidae) in Iran inferred from mitochondrial genes

Abstract

Mehely’s horseshoe bat, Rhinolophus mehelyi Matschie 1901, is a medium-sized rhinolophid with a discontinuous distribution from North Africa and southern Europe through Asia Minor, Anatolia, to Transcaucasia and Iran. Here, we present a detailed study of the phylogeography and population genetics of this species using 745 bp of the mitochondrial cytochrome b and 522 bp of the mitochondrial D-loop genes in 46 bats in eight localities in western and southwesternIran. Based on the mtDNA sequences, we found a low degree of genetic diversity in the Iranian populations of R. mehelyi (σ = 0.0032 for Cytb and σ = 0.0064 for D-loop gene), that show a close relationship among the haplotypes. With a K2P genetic distance (0.38%–0.97% on D-loop and 0.22%–0.69% on Cytb), and the phylogenetic reconstruction in the Eurasia lineage two major clades are introduced. Here, the phylogenetic trees and statistical parsimony network showed all Iranian samples were grouped in the same clade, but southern Europe and North Africa samples belonged to another clade. The average genetic divergence between reciprocally monophyletic clade of the R. mehelyi group in Iran and southern Europe and North Africa were 0.69% for Cytb and 4.09% for D-Loop respectively. The analysis of population structure suggests an incongruent pattern of genetic differentiation. Mismatch distributions and neutrality tests showed recent historical demographic events as indicated by significant deviations in Fu’s FS from neutrality. The hypothesis of sudden-expansion was not rejected by analyses of mismatch distribution as the Raggedness and SSD were insignificant (p(r) = 0.11 and p (SSD) = 0.07). Similarly, the Bayesian skyline plot suggested a population expansion scenario that took place in the past 4.000 years.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. Akmali, V., Farazmand, A., Darvish, J., Sharifi, M., 2011. Phylogeography and taxonomic status of the greater mouse-tailed bat Rhinopoma microphyllum (Chiroptera: Rhinopomatidae) in IranPhylogeography and taxonomic status of the greater mouse-tailed bat Rhinopoma microphyllum (Chiroptera: rhinopomatidae) in Iran. Acta. Chiropterol. 13, 279–290.

  2. Akmali, V., Mehdizadeh, R., Chaghamirza, K., Moradi, M., Sharifi, M., 2014. Taxonomic evaluation of the bent-winged bat (Miniopterus) populations occurring in Iran inferred from mitochondrial cytochrome- b sequences. J. Mammal. 79 (4), 449–455.

  3. Alcaldé, J., Benda, P., Juste, J., https://doi.org/10.2305/IUCN.UK.2016–2.RLTS.T19519A21974380.en. Downloaded on 23 February 2018 2016. Rhinolophus mehelyi. The IUCN Red List of Threatened Species 2016: e.T19519A21974380.

  4. Avise, J.C., 2000. Phylogeography: The History and Formation of Species. Harvard university press, Cambridge, Massachusetts.

  5. Baker, R.J., Bradley, R.D., 2006. Speciation in mammals and the genetic species concept. J. Mammal. 87, 643–662.

  6. Benda, P., Andreas, M., Kock, D., Lucan, R.K., Munclinger, P., Nová, P., Obuch, J., Ochman, K., Reiter, A., Uhrin, M., Weinfurtová, D., 2006. Bats (Mammalia: chiroptera) of the Eastern Mediterranean. Part 4. Bat fauna of Syria: distribution, systematics, ecology. Acta Soc. Zool. Bohem. 70,1–329.

  7. Benda, P., Faizolahi, K., Andreas, M., Obuch, J., Reiter, A., Sevcik, M., Uhrin, M., Vallo, P., Ashrafi, S., 2012. Bats (Mammalia: chiroptera) of the Eastern Mediterranean and Middle East, part 10, bat fauna of Iran. Acta Soc. Zool. Bohem. 76,163–582.

  8. Botnariuc, N., Tatole, V., 2005. Cartea Rosie a Vertebratelor Din Romania. Romania, Bucharest, Museul National de Istorie Naturala, Grigore antipa, 260.

  9. Bouckaert, R., Heled, J., Kuhnert, D., Vaughan, T., Wu, C.H., Xie, D., Suchard, M.A., Rambaut, A., Drummond, A.J., 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537.

  10. Chen, S.F., Rossiter, S.J., Faulkes, C.G., Jones, G., 2006. Population genetic structure and demographic history of the endemic Formosan lesser horseshoe bat (Rhinolophus monoceros). Mol. Ecol. 15,1643–1656.

  11. Corander, J., Marttinen, P., Sirén, J., Tang, J., 2008. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinf. 9,539, https://doi.org/10.1186/1471–2105-9-539.

  12. Csorba, G., Ujhelyi, P., Thomas, N., 2003. Horseshoe Bats of the World (Chiroptera: Rhinolophidae). Alana Books, Bishop’s Castle.

  13. DeBlase, A.F., 1980. The bats of Iran: systematics, distribution, ecology. Field. Zool. 4,1–424.

  14. Dondini, G., Alessandra, T., Salvatore, I., Emanuela, R., 2014. Rediscovery of Mehely’s horseshoe bat (Rhinolophus mehelyi) in peninsular Italy. Hystrix 25 (1), 59–60.

  15. Dool, S.E., Puechmaille, S.J., Foley, N.M., Allegrini, B., Bastian, A., Mutumi, G.L., Maluleke, T.G., Odendaal, L.J., Teeling, E.C., Jacobs, D.S., 2016. Nuclear introns outperform mitochondrial DNA in inter-specific phylogenetic reconstruction: lessons from horseshoe bats (Rhinolophidae: chiroptera). Mol. Phylogenet. Evol. 97,196–212.

  16. Dragu, A., Borissov, I., 2011. Low genetic variability of Rhinolophus mehelyi (Mehely’s horseshoe bat) in Romania. Acta Theriol. 56 (4), 383.

  17. Drummond, A.J., Rambaut, A., 2007. Beast: bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7,214.

  18. Excoffier, R.L., Laval, G., Schneider, S., 2005. Arlequin: ver.3.1: an integrated software package for population genetics data analysis. Evol. Biol. 1,47–50.

  19. Felten, H., Spitzenberger, F., Storch, G., 1977. Zur kleinsäugerfauna west-anatoliens. Teil IIIa. Senckenb. Biol. 58,1–44.

  20. Foley, N.M., Thong, V.D., Soisook, P., Goodman, S.M., Armstrong, K.N., Jacobs, D.S., Puechmaille, S.J., Teeling, E.C., 2014. How and why overcome the impediments to resolution: lessons from rhinolophid and hipposiderid bats. Mol. Boil. Evol. 32 (2), 313–333.

  21. Franco, A., Rodrigues De Los Santos, M., 2001. Libro Rojo De Los Vertebrados Amenazados De Andalucia. Consejeria de Medio Ambiente, Junta de Andalucia (in Italian).

  22. Fu, Y.X., 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147,915–925.

  23. Furman, A., Oztunc, T., Postawa, T., Coraman, N., 2010. Shallow genetic differentiation in Miniopterus schreibersii (Chiroptera: vespertilionidae) indicates a relatively recent re colonization of Europe from a single glacial refugium. Acta Chiropterol. 12,51–55.

  24. Gaisler, J., 2001. Rhinolophus mehelyi matschie, 1901-Mehely-Hufeisennase. Handb. Säugetiere Eur. 4,91–104.

  25. Girdler, R.W., 1984. The evolution of the Gulf Aden and Red Sea in space and time. Deep Sea Res. A Oceanogr. Res. Pap. 31, 747–762.

  26. Grant, W.S., Bowen, B.W., 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J. Heredity 89, 415–426.

  27. Guillen-Servent, A., Francis, CM., Ricklefs, R.E., 2003. Phylogeny and biogeography of the horseshoe bats. Pp. xii–xxiv. In: Csorba, G., Ujhelyi, P., Thomas, N. (Eds.), Horseshoe bats of the world (Chiroptera: Rhinolophidae). Alana Books, Bishop’s Castle, UK, 160.

  28. Guindon, S., Gascuel, O., 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Boil. 52,696–704.

  29. Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.

  30. Harpending, H., 1994. Signature of ancient population growth in a lower solution mitochondrial DNA mismatch distribution. Hum. Biol. 66 (4), 591–600.

  31. Horácˇek, I., Hanák, V., Gaisler, J., 2000. Bats of the palearctic region: a taxonomic and biogeographic review. Proceedings of the VIIIth European Bat Research Symposium, 1., pp. 11–157.

  32. Juste, J., Ibanez, C., Munoz, J., Trujillo, D., Benda, P., Karatas, A., Reudi, M., 2004. Mitochondrial phylogeography of the long-eared bats (Plecotus) in the Mediterranean Palaearctic and Atlantic Islands. Mol. Phylogenet. Evol. 31, 1114–1126.

  33. Kimura, M., 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16,111–120.

  34. Koopman, K.F., 1994. Chiroptera: systematics. In: Niethammer, J., Schliemann, H., Starck, D. (Eds.), Handbook of Zoology. Walter de Gruyter, Berlin & New York, pp. 1–217.

  35. Lanfear, R., Frandsen, P.B., Wrigth, A.M., Sesfeld, T., Calcott, B., 2016. PartitionFinder 2: new methods for selecting partitioned models of evolution formolecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773.

  36. Leigh, J., Bryant, D., 2015. POPART: full-feature software forhaplotype network construction. Meth. Ecol. Evol. 6,1110–1116.

  37. Librado, P., Rozas, J., 2009. DnaSP v5: a software for comprehensive 480 analysis of DNA polymorphism data. Bioinforma 25,1451–1452.

  38. Macey, J.R., Shulte, J.A., Ananjeva, N.B., Larson, A., Rastegar-Pouyani, N., Shamakove, S.M., Papenfuss, T.J., 1998. Phylogenetic relationships among agamid lizards of the Laudakia caucasia species group: testing the hypotheses of biogeographic fragmentation and an area cladogram for the Iranian Plateau. Mol. Phylogenet. Evol. 10,118–131.

  39. Najafi, N., Sharifi, M., Akmali, V., 2018a. A review of Rhinolophus mehelyi in Iran with new distributional records. Iran. J. Animal. Biosyst. 14(1), 39–50.

  40. Najafi, N., Akmali, V., Sharifi, M., 2018b. Historical explanation of genetic variation in the Mediterranean horseshoe bat Rhinolophus euryale (Chiroptera: rhinolophidae) inferred from mitochondrial cytochrome-b and D-loop genes in Iran. Mitochondrial DNA A30 (1), 135–147, https://doi.org/10.1080/24701394.2018.1463375.

  41. Niu, H., Wang, N., Zhao, L., Liu, J., 2007. Distribution and underground habitats of cave-dwelling bats in China. Animal. Conserv. 10,470–477.

  42. Patrick, L.E., McCulloch, E.S., Ruedas, L.A., 2013. Systematics and biogeography of the arcuate horseshoe bat species complex (C hiroptera, R hinolophidae). Zool. Scr. 42 (6), 553–590.

  43. Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259.

  44. Porter, C.A., Baker, R.J., 2004. Systematics of Vampyressa and related genera of phyllostomid bats as determined by cytochrome-b sequences. J. Mammal. 85, 126–132.

  45. Posada, D., 2008. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256.

  46. Puechmaille, S.J., Emma, C.T., 2014. Non-invasive genetics can help find rare species: a case study with Rhinolophus mehelyi and R. Euryale (Rhinolophidae: chiroptera) in Western Europe. Mammalia, 251–255.

  47. Rambaut, A., Available from: 2014. Figtree, a Graphical Viewer of Phylogenetic Trees [Internet]. http://tree.bio.ed.ac.uk/software/figtree.

  48. Rodrigues, L., Palmeirim, J.M., 1999. Rhinolophus Mehelyi. Matschie, 1901. Atlas of European Mammals. Academic Press, London, UK, pp. 98–99.

  49. Rodrigues, L, Rebelo, H., Palmeirim, J.M., 2003. Avaliacao DaTendencia Populacional De Algumas Especies De Morcegos Cavernicolas. Estudo Integrado No Projecto Do Instituto De Canservacao Da Natureza. Livro Vermelho Dos Vertebrados De Portugal - Revisao: Lisboa.

  50. Rodrigues, L, Pereira, M.J.R., Rainho, A., Palmeirim, J.M., 2010. Behavioural determinants of gene flow in the bat Miniopterus schreibersii. Behav. Ecol. Sociobiol. (Print) 64 (5), 835–843.

  51. Rogers, A.R., Harpending, H., 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9,552–569.

  52. Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinforma 19,1572–1574.

  53. Rousset, F., 1997. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145,1219–1228.

  54. Ruedi, M., Castella, V., 2003. Genetic consequences of the ice ages on nurseries of the bat Myotis myotis: a mitochondrial and nuclear survey. Mol. Ecol. 12, 1527–1540.

  55. Ruedi, M., McCracken, G.F., 2009. In: Kunz, T.H., Parsons, S. (Eds.), Genetics and Evolution: Phylogeographic Analysis of Bats. Pp 739–756, in Ecological and Behavioral Methods for the Study of Bats., 2nd edition. Johns Hopkins University Press, Boston, 901.

  56. Salgueiro, P., Coelho, M.M., Palmeirim, J.M., Ruedi, M., 2004. Mitochondrial DNA variation and population structure of the island endemic Azorean bat (Nyctalus azoreum). Mol. Ecol. 13,3357–3366.

  57. Shahabi, S., Akmali, V., Sharifi, M., 2017. Taxonomic evaluation of the greater horseshoe bat Rhinolophus ferrumequinum (Chiroptera: rhinolophidae) in Iran inferred from the Mitochondrial D-Loop Gene. Zool. Sci. 34,361–367.

  58. Sharifi, M., Hemmati, Z., Rahimi, P., 2000. Distribution and conservation status of bats in Iran. Myotis 38, 61–68.

  59. Simmons, N.B., 2005. Order chiroptera. In: Wilson, D.E., Reeder, D.M. (Eds.), Mammal Species of the World: A Taxonomic and Geographic Reference., third edition. Smithsonian Institution Press, pp. 312–529.

  60. Simmons, N.B., Geisler, J.H., 1998. Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryxto extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bull. Am. Mus. Nat. Hist. 235,1–182.

  61. Steiner, H.M., Gaisler, J., 1994. On a collection of bats (Chiroptera) from NE Turkey and N Iran. Acta Sci. Nat. Acad. Sci. Bohem. Brno Ser. Nova 28 (1), 1–37.

  62. Stoffberg, S., Jacobs, D.S., Mackie, I.J., Matthee, C.A., 2010. Molecular phylogenetics and historical biogeography of Rhinolophus bats. Mol. Phylogenet. Evol. 54 (1), 1–9.

  63. Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595.

  64. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2013. MEGA6: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Phylogenet. Evol. 28, 2731–2739.

  65. Thong, V.D., Puechmaille, S.J., Denzinger, A., Bates, P.J.J., Dietz, C., Csorba, G., Soisook, P., Teeling, E.C., Matsumura, S., Furey, N.M., Schnitzler, H.U., 2012. Systematics of the Hipposideros turpis complex and a description of a new subspecies from Vietnam. Mammal. Rev. 42,166–192.

Download references

Author information

Correspondence to Vahid Akmali.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Najafi, N., Sharifi, M. & Akmali, V. First insights into the population genetic structure and the phylogeographic status of the Mehely’s horseshoe bat Rhinolophus mehelyi (Chiroptera: Rhinolophidae) in Iran inferred from mitochondrial genes. Mamm Biol 99, 97–108 (2019). https://doi.org/10.1016/j.mambio.2019.11.002

Download citation

Keywords

  • Rhinolophus mehelyi
  • D-loop
  • Cytochrome-b
  • Phylogenetic reconstruction
  • Iranian Plateau