Advertisement

Mammalian Biology

, Volume 99, Issue 1, pp 81–87 | Cite as

Seasonal space-use and resource limitation in free-ranging black rhino

  • Nikki le Roex
  • Catherine Dreyer
  • Pauli Viljoen
  • Markus Hofmeyr
  • Sam M. Ferreira
Original investigation

Abstract

The spatio-temporal distribution of forage and surface water shapes space-use for many herbivore species. Herbivores must make trade-offs between critical resources such as water and forage under resource-limited conditions. The species-specific strategy employed to do so, however, varies with nutritional requirements, thermoregulation and body size. The black rhinoceros (Diceros bicornis (Linnaeus, 1758)) is a browsing megaherbivore that requires upwards of 50kgs of forage per day and is considered water-dependant. Contrasting evidence regarding surface water dependence and forage selectivity in black rhino, however, makes it unclear which exerts the primary influence on space-use under resource-limited conditions. We used telemetry data to calculate and compare seasonal home range sizes, utilisation overlap and site fidelity for black rhino in the Kruger National Park, South Africa, and use the results to infer the primary limiting resource in a semi-arid savanna ecosystem. Our findings demonstrate seasonal differences in space-use by black rhino, both in home range size and utilisation. Smaller home ranges and higher site fidelity in the dry season suggest that surface water is the primary resource driving these differences, i.e. black rhino restrict their range rather than expand it under resource-limited conditions. This has management implications for understanding the limitations of black rhino re-introduction programmes and the population capacity of small reserves.

Keywords

Home range Animal movement Telemetry Herbivore ecology Wildlife tracking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, T.M., Ngoti, P.M., Nzunda, M.L., Griffith, D.M., Speed, J.D.M., Fossøy, F., Røskaft, E., Graae, B.J., 2018. The burning question: does fire affect habitat selection and forage preference of the black rhinoceros Diceros bicornis in East African savannahs? Oryx,  https://doi.org/10.1017/S0030605318000388.Google Scholar
  2. Atkinson, S., 1995. Maintenance of Captive Black Rhinoceros (Diceros bicornis) on Indigenous Browse in Zimbabwe: Energetics, Nutrition and Implications for Conservation. University of Zimbabwe.Google Scholar
  3. Barton, K., 2018. MuMIn: Multi-Model Inference.Google Scholar
  4. Bates, D., Mächler, M., Bolker, B.M., Walker, S.C., 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67,  https://doi.org/10.18637/jss.v067.i01.
  5. Bell, R.H.V., 1971. A grazing ecosystem in the Serengeti. Sci. Am. 225, 86–93.CrossRefGoogle Scholar
  6. Belovsky, G.E., 1997. Optimal foraging and community structure: the allometry of herbivore food selection and competition. Evol. Ecol. 11, 641–672,  https://doi.org/10.1023/A:1018430201230.CrossRefGoogle Scholar
  7. Bhattacharyya, A., 1943. On a measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math. Soc. 35, 99–109.Google Scholar
  8. Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H.H., White, J.S.S., 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135,  https://doi.org/10.1016/j.tree.2008.10.008.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Börger, L, Franconi, N., De Michele, G., Gantz, A., Meschi, F., Manica, A., Lovari, S., Coulson, T., 2006. Effects of sampling regime on the mean and variance of home range size estimates. J. Anim. Ecol. 75, 1393–1405,  https://doi.org/10.1111/j.1365-2656.2006.01164.x.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bucini, G., Saatchi, S., Hanan, N., Boone, R.B., Smit, I., 2009. Woody cover and heterogeneity in the savannas of the Kruger National Park, South Africa. IEEE International Geoscience and Remote Sensing Symposium, 334–337.Google Scholar
  11. Buk, K.G., Knight, M.H., 2010. Seasonal diet preferences of black rhinoceros in three arid South African National Parks. Afr. J. Ecol. 48, 1064–1075,  https://doi.org/10.1111/j.1365-2028.2010.01213.x.CrossRefGoogle Scholar
  12. Cain, J.W., Owen-Smith, N., Macandza, V.A., 2012. The costs of drinking: comparative water dependency of sable antelope and zebra. J. Zool. 286, 58–67,  https://doi.org/10.1111/j.1469-7998.2011.00848.x.CrossRefGoogle Scholar
  13. Calenge, C., 2006. The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Modell. 7, 516–519,  https://doi.org/10.1016/j.ecolmodel.2006.03.017.CrossRefGoogle Scholar
  14. Charnov, E.L., 1976. Optimal foraging, the marginal value theorem. Theor. Popul. Biol. 9, 129–136.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Coe, M.J., Cumming, D.H., Phillipson, J., 1976. Biomass and production of large African herbivores in relation to rainfall and primary production. Oecologia 22, 341–354.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Cromsigt, J.P.G.M., 2006. Large Herbivores in Space: Resource Partitioning Among Savanna Grazers in a Heterogeneous Environment. University of Groningen.Google Scholar
  17. Crosmary, W.G., Valeix, M., Fritz, H., Madzikanda, H., Côté, S.D., 2012. African ungulates and their drinking problems: hunting and predation risks constrain access to water. Anim. Behav. 83, 145–153,  https://doi.org/10.1016/j.anbehav.2011.10.019.CrossRefGoogle Scholar
  18. Dahle, B., Swenson, J., 2003. Home ranges in adult Scandinavian brown bears. J. Zool. 260, 329–335.CrossRefGoogle Scholar
  19. Emslie, R.H., Adcock, K., 2013. Diceros bicornis, black rhinoceros. In: Kingdon, J., Hoffmann, M. (Eds.), Mammals of Africa, Volume V: Carnivores, Pangolins, Equids and Rhinoceroses. Bloomsbury Publishing, London, pp. 455–466.Google Scholar
  20. Fattebert, J., Balme, G.A., Robinson, H.S., Dickerson, T., Slotow, R., Hunter, L.T.B., 2016. Population recovery highlights spatial organization dynamics in adult leopards. J. Zool. 299, 153–162,  https://doi.org/10.1111/jzo.12344.CrossRefGoogle Scholar
  21. Ferreira, S.M., le Roex, N., Greaver, C., 2019. Species-specific drought impacts on black and white rhinoceroses. PLoS One 14, e0209678.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Fieberg, J., Kochanny, CO., 2005. Quantifying home-range overlap: the importance of the utilization distribution. J. Wildl. Manage. 69, 1346–1359.CrossRefGoogle Scholar
  23. Ganqa, N.M., Scogings, P.F., Raats, J.G., 2005. Diet selection and forage quality factors affecting woody plant selection by black rhinoceros in the Great Fish River Reserve, South Africa. S. Afr. J. Wildl. Res. 35, 77–83,  https://doi.org/10.1088/1361-6528/aaea26.Google Scholar
  24. Geist, V., 1974. On the relationship of social evolution and ecology in ungulates. Am. Zool. 14, 205–220.CrossRefGoogle Scholar
  25. Gertenbach, W.P.D., 1983. Landscapes of the Kruger National Park. Koedoe 26, 9–121,  https://doi.org/10.4102/koedoe.v26i1.591.CrossRefGoogle Scholar
  26. Gertenbach, W.P.D., 1980. Rainfall patterns in the Kruger National Park. Koedoe 23, 35–43,  https://doi.org/10.4102/koedoe.v23i1.634.CrossRefGoogle Scholar
  27. Goddard, J., 1968. Food preferences of two black rhinoceros populations. East Afr. Wildl. J. 6, 1–18.CrossRefGoogle Scholar
  28. Göttert, T., Schöne, J., Zinner, D., Hodges, J.K., Böer, M., 2010. Habitat use and spatial organisation of relocated black rhinos in Namibia. Mammalia 74, 35–42,  https://doi.org/10.1515/MAMM.2010.012.CrossRefGoogle Scholar
  29. Grainger, M., van Aarde, R., Whyte, I., 2005. Landscape heterogeneity and the use of space by elephants in the Kruger National Park, South Africa. Afr. J. Ecol. 43, 369–375,  https://doi.org/10.1111/j.1365-2028.2005.00592.x.CrossRefGoogle Scholar
  30. Hitchins, P.M., 1969. Influence of vegetation types on sizes of home ranges of black rhinoceros in Hluhluwe Game Reserve, Zululand. Lammergeyer 10, 81–86.Google Scholar
  31. Hitchins, P.M., Anderson, J.L., 1983. Reproduction, population characteristics and management of the black rhinoceros Diceros bicomis minor in the Hluhluwe/Comdor/Umfolozi Game Reserve Complex. S. Afr.J. Wildl. Res. 13, 78–85.Google Scholar
  32. Iason, G., van Wieren, S.E., 1999. Digestive and ingestive adaptations of mammalian herbivores to low-quality forage. In: Olff, H., Brown, V.K., Drent, R.H. (Eds.), Herbivores: Between Plants and Predators. Blackwell Science Ltd., Oxford, pp. 337–370,  https://doi.org/10.1046/j.1365-2664.1999.00459-6.x.Google Scholar
  33. Joubert, E., 1971. Notes on the ecology and behaviour of the black rhinoceros Diceros bicornis Linn. 1758 in South West Africa. Madoqua 1, 5–53.Google Scholar
  34. Lent, P.C., Fike, B., 2003. Home ranges, movements and spatial relationships in an expanding population of black rhinoceros in the Great Fish River Reserve, South Africa. S. Afr.J. Wildl. Res. 33, 109–118,  https://doi.org/10.3417/2007065.Google Scholar
  35. Linklater, W.L., Plotz, R.D., Kerley, G.I.H., Brashares, J.S., Lent, P.C., Cameron, E.Z., Law, P.R., Hitchins, P.M., 2010. Dissimilar home range estimates for black rhinoceros Diceros bicornis cannot be used to infer habitat change. Oryx 44(1), 16–18.CrossRefGoogle Scholar
  36. Mitchell, M.S., Powell, R.A., 2012. Foraging optimally for home ranges. J. Mammal. 93, 917–928,  https://doi.org/10.1644/11-MAMM-S-157.1.CrossRefGoogle Scholar
  37. Mukinya, J.G., 1977. Feeding and drinking habits of the black rhinoceros in Masai Mara game Reserve. Afr. J. Ecol. 15, 125–138,  https://doi.org/10.1111/j.1365-2028.1977.tb00386.x.CrossRefGoogle Scholar
  38. Muya, S.M., Oguge, N.O., 2000. Effects of browse availability and quality on black rhino (Diceros bicornis michaeli, Groves 1967) diet in Nairobi National Park, Kenya. Afr. J. Ecol. 38, 62–71.CrossRefGoogle Scholar
  39. Owen-Smith, N., Novellie, P., 1982. What should a clever ungulate eat? Am. Nat. 119, 151–178.CrossRefGoogle Scholar
  40. Plotz, R.D., Grecian, W.J., Kerley, G.I.H., Linklater, W.L., 2016. Standardising home range studies for improved management of the critically endangered black rhinoceros. PLoS One 11, 1–17,  https://doi.org/10.1371/journal.pone.0150571.CrossRefGoogle Scholar
  41. Plotz, R.D., Grecian, W.J., Kerley, G.I.H., Linklater, W.L., 2017. Too close and too far: quantifying black rhino displacement and location error during research. Afr.J. Wildl. Res. 47, 47–58.CrossRefGoogle Scholar
  42. R Core Team, 2018. R: a Language and Environment for Statistical Computing.Google Scholar
  43. Redfern, J.V., Grant, R., Biggs, H., Getz, W.M., 2003. Surface-water constraints on herbivore foraging in the Kruger National Park, South Africa. Ecology 84, 2092–2107.CrossRefGoogle Scholar
  44. Redfern, J.V., Grant, C.C., Gaylard, A., Getz, W.M., 2005. Surface water availability and the management of herbivore distributions in an African savanna ecosystem. J. Arid Environ. 63, 406–424,  https://doi.org/10.1016/j.jaridenv.2005.03.016.CrossRefGoogle Scholar
  45. Reid, C, Slotow, R., Howison, O., Balfour, D., 2007. Habitat changes reduce the carrying capacity of Hluhluwe-Umfolozi Park, South Africa, for Critically Endangered black rhinoceros Diceros bicornis. Oryx 41, 247,  https://doi.org/10.1017/S0030605307001780.CrossRefGoogle Scholar
  46. Samuel, M.D., Pierce, D.J., Garton, E.O., 1985. Identifying areas of concentrated use within the home range. J. Anim. Ecol. 54, 711–719.CrossRefGoogle Scholar
  47. Smit, I.P.J., 2011. Resources driving landscape-scale distribution patterns of grazers in an African savanna. Ecography 34, 67–74,  https://doi.org/10.1111/j.1600-0587.2010.06029.x.CrossRefGoogle Scholar
  48. Smit, I.P.J., Grant, C.C., 2009. Managing surface-water in a large semi-arid savanna park: effects on grazer distribution patterns. J. Nat. Conserv. 17, 61–71,  https://doi.org/10.1016/j.jnc.2009.01.001.CrossRefGoogle Scholar
  49. Smit, I.P.J., Grant, C.C., Devereux, B.J., 2007. Do artificial waterholes influence the way herbivores use the landscape? Herbivore distribution patterns around rivers and artificial surface water sources in a large African savanna park. Biol.Google Scholar
  50. Valeix, M., Loveridge, A.J., Chamaillé-Jammes, S., Davidson, Z., Murindagomo, F., Fritz, H., Macdonald, D.W., 2009. Behavioral adjustments of African herbivores to predation risk by lions: spatiotemporal variations influence habitat use. Ecology 90, 23–30,  https://doi.org/10.1890/08-0606.1.PubMedCrossRefPubMedCentralGoogle Scholar
  51. van Beest, F.M., Mysterud, A., Loe, L.E., Milner, J.M., 2010. Forage quantity, quality and depletion as scaledependent mechanisms driving habitat selection of a large browsing herbivore. J. Anim. Ecol. 79, 910–922,  https://doi.org/10.1111/j.1365-2656.2010.01701.x.PubMedPubMedCentralGoogle Scholar
  52. van Lieverloo, R.J., Schuiling, B.F., de Boer, W.F., Lent, P.C., de Jong, C.B., Brown, D., Prins, H.H.T., 2009. A comparison of faecal analysis with backtracking to determine the diet composition and species preference of the black rhinoceros (Diceros bicornis minor). Eur. J. Wildl. Res. 55, 505–515,  https://doi.org/10.1007/s10344-009-0264-5.CrossRefGoogle Scholar
  53. White, G.C., Garrott, R.A., 1990. Analysis of Wildlife Radio-tracking Data. Academic Press, New York.Google Scholar
  54. Wittmer, H.U., McLellan, B.N., Hovey, F.W., 2006. Factors influencing variation in site fidelity of woodland caribou (Rangifertarandus caribou) in southeastern British Columbia article. Can. J. Zool. 84, 537–545,  https://doi.org/10.1139/z06-026.CrossRefGoogle Scholar
  55. Worton, B.J., 1989. Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70, 164–168.CrossRefGoogle Scholar
  56. Young, K.D., van Aarde, R.J., 2010. Density as an explanatory variable of movements and calf survival in savanna elephants across southern Africa. J. Anim. Ecol. 79, 662–673,  https://doi.org/10.1111/j.1365-2656.2010.01667.x.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2019

Authors and Affiliations

  • Nikki le Roex
    • 1
    • 2
    • 1
  • Catherine Dreyer
    • 3
  • Pauli Viljoen
    • 1
  • Markus Hofmeyr
    • 4
  • Sam M. Ferreira
    • 1
  1. 1.Scientific Services, South African National ParksSkukuzaSouth Africa
  2. 2.Institute for Communities and Wildlife in Africa (iCWild), Department of Biological SciencesUniversity of Cape TownCape TownSouth Africa
  3. 3.Ranger ServicesSouth African National ParksSkukuzaSouth Africa
  4. 4.Veterinary Wildlife ServicesSouth African National ParksSkukuzaSouth Africa

Personalised recommendations