Advertisement

Mammalian Biology

, Volume 99, Issue 1, pp 27–36 | Cite as

Genetic diversity and phylogenetic relationships in feral pig populations from Argentina

  • Diana B. AcostaEmail author
  • Carlos E. Figueroa
  • Gabriela P. Fernández
  • Bruno N. Carpinetti
  • Mariano L. Merino
Original investigation

Abstract

In Argentina, domestic pigs (Sus scrofa Linnaeus 1758) were introduced during the first Buenos Aires foundation, in the year 1536. Their provenance was mainly from the Iberian Peninsula, the Canary Islands and Cape Verde. In 1541 those pigs were released and, consequently, the first feral populations were originated. Thereafter, the species propagated both naturally and through human action, reaching a distribution that covers most of the Argentinian territory. The objective of this study is to genetically characterize the oldest feral pig populations in Argentina, making use of the mitochondrial control region (CR) and the amelogenin gene (AmelY), in order to determine their phylogenetic origin and corroborate its consistency with the historic information. The obtained results indicate that most of the feral pigs in Corrientes and Buenos Aires populations are positioned in the European subclades, El-A and El-C for CR, and HY1 and HY2 for AmelY. Despite this fact, a low frequency of individuals of Asian origin was found in populations from Buenos Aires, whereas none of them disclosed African ancestry. Furthermore, given that a large proportion of feral pigs found in the species’ original sites in Argentina have European ancestry, we can partially corroborate the historical records.

Keywords

Feral pig Argentina Control region Amelogenin gene Phylogenetic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adeola, A.C., Oluwole, O.O., Oladele, B.M., Olorungbounmi, T.O., Boladuro, B., Olaogun, S.C., Frantz, L., 2017. Analysis of the genetic variation inmitochondrial DNA, Y-chromosome sequences, and MCI R sheds light on theancestry of Nigerian indigenous pigs. Genet. Sel. Evol. 49 (1), 52–57, http://www.dx.doi.org/10.1186/sl2711-017-0326-1.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alexandri, P., Triantafyllidis, A., Papakostas, S., Chatzinikos, E., Platis, P., Papageorgiou, N., Larson, G., Abatzopoulos, T.J., Triantaphyllidis, C., 2012. TheBalkans and the colonization of Europe: the post-glacial range expansion of thewild boar, Sus scrofa.J. Biogeogr. 39 (4), 713–723,  https://doi.org/10.1111/j.1365-2699.2011.02636.xCrossRefGoogle Scholar
  3. Alves, E., Ovilo, C., Rodriguez, M.C., Silio, L., 2003. Mitochondrial DNA sequencevariation and phylogenetic relationships among Iberian pigs and otherdomestic and wild pig populations. Anim. Genet. 34 (5), 319–324,  https://doi.org/10.1046/j.1365-2052.2003.01010.xPubMedCrossRefGoogle Scholar
  4. Alves, C., Pinheiro, I., Godinho, R., Vicente, J., Gortãzar, C., Scandura, M., 2010. Genetic diversity of wild boar populations and domestic pig breeds (Sus scrofa) in South-western Europe. Biol. J. Linn. Soc. 101 (4), 797–822,  https://doi.org/10.1111/j.1095-8312.2010.01530.x.CrossRefGoogle Scholar
  5. Aravena, P., Skewes, O., Gouin, N., 2015. Mitochondrial DNA diversity of feral pigsfrom Karukinka Natural Park, Tierra del Fuego Island, Chile. Genet. Mol. Res. 14(2), 4245–4257, http://www.dx.doi.Org/10.4238/2015.April.28.6.PubMedCrossRefGoogle Scholar
  6. Ballari, S.A., Cuevas, M.F., Cirignoli, S., Valenzuela, A.E., 2014. Invasive wild boar inArgentina: using protected areas as a research platform to determinedistribution, impacts and management. Biol. Invasions 17 (6), 1595–1602, https://doi.org/10.1007/sl0530-014-0818-7.CrossRefGoogle Scholar
  7. Ballari, S.A., Kuebbing, S.E., Nuñez, M.A., 2016. Potential problems of removing oneinvasive species at a time: a meta-analysis of the interactions betweeninvasive vertebrates and unexpected effects of removal programs. Peer J. 4,e2029,  https://doi.org/10.7717/peerj.2029.PubMedCrossRefGoogle Scholar
  8. Bandelt, H.J., Forster, P., Röhl, A., 1999. Median-joining networks for inferringintraspeciflc phytogenies. Mol. Biol. Evol. 16(1), 37–48,  https://doi.org/10.1093/oxfordjournals.molbev.a026036.PubMedCrossRefGoogle Scholar
  9. Burgos-Paz, W., Souza, CA, Megens, H.J., Ramayo-Caldas, Y., Melo, M., Lemus-Flores, C., Aguirre, L., 2013. Porcine colonization of the Americas: a 60kSNP story. Heredity. 110 (4), 321–330,  https://doi.org/10.1038/hdy.2012.109.PubMedCrossRefGoogle Scholar
  10. Cardiel, J., 1930. Diario del Viaje y Misión al Río del Sauce por fines de Marzo de1748. In: Furlong Cardiff, P.G., Outes, F.F. (Eds.), Publicaciones del Instituto deInvestigaciones Geográflcas de la Facultad de Filosofía y Letras., coni ed, Buenos Aires, Argentina.Google Scholar
  11. Carnevali, R., 1994. Fitogeografía de la provincia de Corrientes: cartas, escalas 1:500.000 y 1: 1.000.000. Gobierno de la Provincia de Corrientes. InstitutoNacional de Tecnología Agropecuaria, Corrientes, Argentina.Google Scholar
  12. Carpinetti, B., Castresana, G., Rojas, P., Grant, J., Marcos, A., Monterubbianesi, M., Borrãs, P., 2014. Vigilancia epidemiológica en poblaciones de cerdos silvestres(Sus scrofa). Implicancias para la salud pública, la producción animal y laconservación de la biodiversidad. SNS 6, 67–76.Google Scholar
  13. Carpinetti, B.N., 2015. La Política del“perro del Hortelano”. Cazafurtivay especiesexóticas en Bahía Samborombón. AVÁ 24, 129–139.Google Scholar
  14. Carpinetti, B.N., Di Guirolamo, G., Delgado, J.V., Martínez, R.D., 2016. El CerdoCriollo Costero: Valioso recurso zoogenético local de la provincia de BuenosAires Argentina. Arch. Zootec. 65 (251), 403–407,  https://doi.org/10.21071/az.v65i251.703.CrossRefGoogle Scholar
  15. Crossby, A.W., 2003. The Columbian Exchange: Biological and CulturalConsequences of 1492, 1° ed. Greenwood Publishing Group,  https://doi.org/10.2307/2936788.Google Scholar
  16. Darriba, D., Taboada, G.L., Doallo, R., Posada, D., 2012. jModelTest 2: more models,new heuristics and parallel computing. Nat. Methods 9 (8), 772–776,  https://doi.org/10.1038/nmeth.2109.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Di Giácomo, A.S.D., Casenave, J.L.D., 2010. Use and importance of crop andfield-margin habitats for birds in a neotropical agricultural ecosystem. Condor 112 (2), 283–293,  https://doi.org/10.1525/cond.2010.090039.CrossRefGoogle Scholar
  18. Donkin, R.A., 1985. The peccary with observations on the introduction of pigs tothe New World. T. Am. Philos. Soc. 75 (5), 1–152,  https://doi.org/10.2307/1006340.CrossRefGoogle Scholar
  19. Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A., 2012. Bayesian phylogeneticswith BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29 (8), 1969–1973,  https://doi.org/10.1093/molbev/mss075.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Etchepare, E.G., Ingaramo, M.R., Porcel, E., Alvarez, B.B., 2013. Diversidad de lascomunidades de escamados en la Réserva Natural del Iberã, Corrientes, Argentina. Rev. Mex. Biodivers. 84, 1273–1283,  https://doi.org/10.7550/rmb.36248.CrossRefGoogle Scholar
  21. Excoffier, L, Lischer, H.E.L., 2010. Arlequin suite ver 3.5: A new series of programsto perform population genetics analyses under Linux and Windows. Mol. Ecol.Resour. 10, 564–567, http://www.dx.doi.Org/10.1111/j.1755-0998.2010.02847.x.PubMedCrossRefGoogle Scholar
  22. Fang, M., Andersson, L., 2006. Mitochondrial diversity in European and Chinesepigs is consistent with population expansions that occurred prior to domestication. Proc. R. Soc. Lond. [Biol]. 273 (1595), 1803–1810, http://www.dx.doi.org/10.1098/rspd.2006.3514.CrossRefGoogle Scholar
  23. Felsenstein. J., 1985. Confidence limits on phytogenies: an approach usingthebootstrap. Evolution 39 (4), 783–791, http://www.dx.doi.Org/10.1111/j.1558-5646.1985.tb00420.x.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Freitas, A.B., Rosado, M.M., 2014. A introdução dos suínos no Brasil. In: Filha, Olimpia Lima Silva (Ed.), Las Razas Porcinas Iberoamericanas. Un Enfoque Etnozootécnico. Instituto Federal Baiano, Campus Valença, Salvador, Brazil, pp.39–54.Google Scholar
  25. Gade, D., 1987. The Iberian pig in the central Andes. J. Cult. Geogr. 7 (2), 35–49,  https://doi.org/10.1080/08873638709478506.CrossRefGoogle Scholar
  26. Giberti, H.C., 1985. Historia económica de la ganadería argentina. Hyspamérica, Buenos Aires, Argentina.Google Scholar
  27. Giuffra, E.J.M.H., Kijas, J.M.H., Amarger, V., Carlborg, Ö., Jeon, J.T., Andersson, L., 2000. The origin of the domestic pig: independent domestication andsubsequent introgression. Genetics 154 (4), 1785–1791.PubMedPubMedCentralGoogle Scholar
  28. Giménez-Dixon, M., 1991. Estimación de parãmetros poblacionales del venado delas Pampas (Ozotoceros bezoarticus celer, Cabrera 1943 -Cervidae) en la costade la Bahía Samborombón (Provincia de Buenos Aires) a partir de datos obtenidos mediante censos aéreos. Tesis de Doctorado, Universidad Nacionalde La Plata, Argentina.Google Scholar
  29. Gonela, A., 2003. Aplicação de marcadores microssatélites de Sus scrofa domesticana caracterização genetica de populaçes de Sus scrofa sp (porco-Monteiro) eTayassu pécari (queixada). Tese de doutorado, Universidade de São Paulo, Brasil.Google Scholar
  30. Gongora, J., Fleming, P., Spencer, P.B., Mason, R., Garkavenko, O., Meyer, J.N., Moran, C, 2004. Phylogenetic relationships of Australian and New Zealandferal pigs assessed by mitochondrial control region sequence and nuclear GPIPgenotype. Mol. Phylogenet. Evol. 33 (2), 339–348, http://www.dx.doi.Org/10.1016/j.ympev.2004.06.004.PubMedCrossRefGoogle Scholar
  31. Grossi, S.F., Lui, J.F., Garcia, J.E., Meirelles, F.V., 2006. Genetic diversity in wild (Susscrofa scrofa) and domestic (Sus scrofa domestica) pigs and their hybrids basedon polymorphism of a fragment of the D-loop region in the mitochondrialDNA. Genet. Mol. Res. 5 (4), 564–568.PubMedGoogle Scholar
  32. Hall, T.A., 1999. Bio Edit: a user-friendly biological sequence alignment editor andanalysis program for Windows 95/98/NT. Nucl. Acid 41 (41), 95–98.Google Scholar
  33. Hasegawa, M., Kishino, H., Yano, T.A., 1985. Dating of the human-ape splitting by amolecular clock of mitochondrial DNA. J. Mol. Evol. 22 (2), 160–174,  https://doi.org/10.1007/BF02101694.PubMedCrossRefGoogle Scholar
  34. Hudson, W.H., 1956. Días de ocio en la Patagonia. Continente, Buenos Aires,Argentina.Google Scholar
  35. Iacolina, L., Brajković, V., Canu, A., Šprem, N., Cubric-Curik, V., Fontanesi, L., Saarma, U., Scandura, M., 2016. Novel Y-chromosome short tandem repeats in Sus scrofa and their variation in European wild boar and domestic pig populations.Anim. Genet. 47 (6), 682–690, http://www.dx.doi.org/10.1111/age.12483.Google Scholar
  36. Iriart, R., 1997. Evolución Historica de la Pampa Deprimida. In: Berbeglia, CE. (Ed.),Propuesta para una antropología Argentina IV. Biblos, Buenos Aires, Argentina, pp. 351–368.Google Scholar
  37. Iriondo, M., 1995. La Pampa. In: Argollo. J.P. (Ed.), Climas cuaternarios en Americadel Sur. Institut Français de Recherche Scientifique pour le Développement enCoopération (Mourguiart ed), La Paz, Bolivia, pp. 283–306.Google Scholar
  38. Kim, K.I., Lee. J.H., Li, K., Zhang, Y.P., Lee, S.S., Gongora, J., Moran, C, 2002. Phylogenetic relationships of Asian and European pig breeds determined bymitochondrial DNA D-loop sequence polymorphism. Anim. Genet. 33 (1), 19–25, http://www.dx.doi.Org/10.1046/j.1365-2052.2002.00784.x.PubMedCrossRefGoogle Scholar
  39. Kusza, S., Podgorski, T., Scandura, M., Borowik, T., Jãvor, A., Sidorovich, V., Jędrzejewska, B., 2014. Contemporary genetic structure, phylogeography andpast demographic processes of wild boar Sus scrofa population in Central andEastern Europe. PLoS One 9 (3), 1–11,  https://doi.org/10.1371/journal.pone.0091401.CrossRefGoogle Scholar
  40. Larson, G., Dobney, It, Albarella, U, Fang, M., Matisoo-Smith, E., Robins, J., Rowley-Conwy, P., 2005. Worldwide phylogeography of wild boar revealsmultiple centers of pig domestication. Science 307 (5715), 1618–1621,  https://doi.org/10.1126/science.1106927.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Larson, G., Liu, R., Zhao, X., Yuan, J., Fuller, D., Barton, L., Luo, Y., 2010. Patterns ofEast Asian pig domestication, migration, and turnover revealed by modern andancient DNA. Proc. Natl. Acad. Sci. U. S. A. 107 (17), 7686–7691,  https://doi.org/10.1073/pnas.0912264107.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Leigh, J.W., Bryant, D., 2015. Popart: full-feature software forhaplotype networkconstruction. Methods Ecol. Evol. 6 (9), 1110–1116, http://www.dx.doi.Org/10.l111/2041-210X.12410.CrossRefGoogle Scholar
  43. Lemus, C., Ly, J., 2010. Estudios de sostenibilidad de cerdos mexicanos pelones ycuinos. La iniciativa nayarita. Revista Computadorizada de Producción Porcina 17, 89–98.Google Scholar
  44. Librado, P., Rozas, J., 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25 (11), 1451–1452,  https://doi.org/10.1093/bioinformatics/btpl87.PubMedCrossRefGoogle Scholar
  45. Maeder, E.J.A., 1981. Historia económica de Corrientes en el perfodo virreinal 1776–1810. Academia Nacional de la Historia, Buenos Aires, Argentina.Google Scholar
  46. Matteucci, S., 2012. Ecorregión Pampa. In: Morello, S.D., Matteucci, A., Rodriguez, M., Silva, J. (Eds.), Ecorregiones y Complejos Ecosistémicos Argentinos., pp. 441–500, Buenos Aires, Argentina.Google Scholar
  47. Merino, M.L., Carpinetti, B.N., 2003. Feral pig Sus scrofa populations estimates in Bahía Samborombón Conservation Area, Buenos Aires province, Argentina. Mastozool. Neotrop. 10, 269–275.Google Scholar
  48. Morris, I., 1956. Una narración fiel de los peligros y desventuras que sobrellevóIsaac Morris, 1° ed, Buenos Aires, Argentina.Google Scholar
  49. Musters, G.C., 1997. Vida entre los patagones. El Elefante Blanco.Google Scholar
  50. Navas, J.R., 1987. Los vertebrados exóticos introducidos en Argentina. Revista delMuseo Argentino de Ciencias Naturales Bernardino Rivadavia. 14 (2), 7–38.Google Scholar
  51. Neiff, J.J., 2004. El Iberá... ¿en peligro Fundación Vida Silvestre Argentina, BuenosAires, Argentina.Google Scholar
  52. Neiff, J.J., Poi de Neiff, A.S.G., 2006. Situación ambiental de la ecoregión Iberã. In:Brown, A.D., Martínez Ortíz, U., Acerbi, M., Corcuera, J. (Eds.), La situaciónambiental argentina, Fundación Vida Silvestre Argentina., pp. 176–194,Buenos Aires, Argentina.Google Scholar
  53. Noce, A., Amills, M., Manunza, A., Muwanika, V., Muhangi, D., Aliro, T., Mercadé, A., 2015. East African pigs have a complex Indian, Far Eastern and Westernancestry. Anim. Genet. 46 (4), 433–436,  https://doi.org/10.1111/age.12305.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Novillo, A., Ojeda, R.A., 2008. The exotic mammals of Argentina. Biol. Invasions 10(8), 1333–1345,  https://doi.org/10.1007/sl0530-007-9208-8.CrossRefGoogle Scholar
  55. Osei-Amponsah, R., Skinner, B.M., Adjei, D.O., Bauer, J., Larson, G., Affara, N.A., Sargent, C.A., 2017. Origin and phylogenetic status of the local Ashanti Dwarfpig (ADP) of Ghana based on genetic analysis. BMC Genomics 18 (1), 193–205,http://www.dx.doi.org/10.1186/sl2864-017-3536-6.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Pérez Carusi, L.C., Beade, M.S., Miñarro, F., Vila, A.R., Giménez-Dixon, M., Bilenca, D.N., 2009. Relaciones espaciales y numéricas entre venados de las pampas(Ozotoceros bezoarticus celer) y chanchos cimarrones (Sus scrofa) en el Refugiode Vida Silvestre Bahía Samborombón, Argentina. Ecol. Austral 19 (1), 63–71.Google Scholar
  57. Rambaut, A., Available: 2012. Fig Tree v.1.4.0. http://tree.bio.ed.ac.uk/software/figtree/.
  58. Ramírez, O., Ojeda, A., Tomas, A., Gallardo, D., Huang, L.S., Folch, J.M., Galman-Omitogun, O., 2009. Integrating Y-chromosome, mitochondrial, andautosomal data to analyze the origin of pig breeds. Mol. Biol. Evol. 26 (9), 2061–2072,  https://doi.org/10.1093/molbev/msp118.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Rio Moreno, J.L., 1996. EI cerdo. Historia de un elemento esencial de la culturacastellana en la conquista y colonización de America (siglo XVI). Anu. Estud.Am. 53 (1), 13–35,  https://doi.org/10.3989/aeamer.1996.v53.il.430.Google Scholar
  60. Sagua, M.I., Figueroa, C.E., Acosta, D.B., Fernández, G.P., Carpinetti, B.N., Birochio, D., Merino, M.L., 2018. Inferring the origin and genetic diversity of theintroduced wild boar (Sus scrofa) populations in Argentina: an approach frommitochondrial markers. Mammal Res. 163 (4), 467–476,  https://doi.org/10.1007/S13364-018-0380-2.CrossRefGoogle Scholar
  61. Sambrook, J., Russell, D.W., 2006. Rapid isolation of yeast DNA. Cold Spring Harb.Protoc. 2006 (1), 631–632,  https://doi.org/10.1101/pdb.prot093542.CrossRefGoogle Scholar
  62. Sánchez Labrador, J., 1936. Los indios pampas, puelches, patagones. Viau y Zona, Buenos Aires, Argentina.Google Scholar
  63. Scandura, M., Iacolina, L., Crestanello, B., Pecchioli, E., Di Benedetto, M.F., Russo, V., Davoli, R., ApoIIonio, M., Bertorelle, G., 2008. Ancient vs. recent processes asfactors shaping the genetic variation of the European wild boar: are the effects of the last glaciation still detectable Mol. Ecol. 17 (7), 1745–1762,  https://doi.org/10.1111/j.l365-294X.2008.03703.x.PubMedCrossRefGoogle Scholar
  64. SchmidI, U., 2010. Viaje al Río de la Plata. Emecé, Buenos Aires, Argentina.Google Scholar
  65. Serena, M.S., Artuso, M.C., Pérez, A., Echeverría, M.G., Laksman, Y., Arocena, G., Carpinetti, B.N., 2015. Vigilancia epidemiológica de las principales virosis que afectan a las poblaciones de cerdos silvestres (Sus scrofa) en distintas zonas de la República Argentina. In: XI Congreso Argentino de Virología, CABA, Argentina, pp. 114–115.Google Scholar
  66. Sollero, B.P., Paiva, S.R., Faria, D.A., Guimarães, S.E.F., Castro, S.T.R., Egito, A.A., Mariante, A.D.S., 2009. Genetic diversity of Brazilian pig breeds evidenced by microsatellite markers. Livest. Sci. 123 (1), 8–15, http://www.dx.doi.Org/10.1016/j.Iivsci.2008.09.025.CrossRefGoogle Scholar
  67. Tamura, It, Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30(12), 2725–2729,  https://doi.org/10.1093/molbev/mst197.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Van Asch, B., Pereira, F., Santos, L.S., Carneiro, J., Santos, N., Amorim, A., 2012. Mitochondrial lineages reveal intense gene flow between Iberian wild boars and South Iberian pig breeds. Anim. Genet. 43 (1), 35–41,  https://doi.org/10.1111/j.1365-2052.2011.02222.x.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Veličković, N., Djan, M., Ferreira, E., Stergar, M., Obreht, D., Maletic, V., Fonseca, C., 2015. From north to south and back: the role of the Balkans and other southern peninsulas in the recolonization of Europe by wild boar. J. Biogeogr. 42 (4), 716–728,  https://doi.org/10.1111/jbi.12458.CrossRefGoogle Scholar
  70. Villarino, B., 1783. Diario del piloto de la Real Armada Don Basilio Villarino del reconocimiento que hizo del río Negro en la costa oriental de Patagonia el ano de 1782. Imprenta del Estado. Colección de Obras y Documentos relativos a la Historia Antigua y Moderna de las Provincias del Rio de la Plata, Buenos Aires, Argentina, pp. 967–1138.Google Scholar
  71. Volpedo, A., Yunes Nunez, T., Fernández Cirelli, A., 2005. El Humedal Mixohalino de Bahía Samborombón: Conservación y Perspectivas, in Humedales Fluviales de América del Sur Hacia un manejo sustentable. Proteger, Buenos Aires, Argentina, pp. 89–106.Google Scholar
  72. Watanobe, T., Ishiguro, N., Nakano, M., 2003. Phylogeography and population structure of the Japanese wild boar Sus scrofa leucomystax: mitochondrial DNA variation. Zool. Sci. 20 (12), 1477–1489,  https://doi.org/10.2108/zsj.20.1477.PubMedCrossRefGoogle Scholar
  73. Wernicke, E., 1938. Rutas y Etapas de la Introducción de los Animales Domésticos en las Tierras Americanas. Anales de la Sociedad Argentina de Estudios Geogrãficos. 6, 77–83.Google Scholar
  74. Zadik, B.J., Doctoral dissertation 2005. The Iberian Pig in Spain and the Americas at the Time of Columbus. University of California, Berkeley, United States.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2019

Authors and Affiliations

  • Diana B. Acosta
    • 1
    • 2
    Email author
  • Carlos E. Figueroa
    • 1
    • 2
  • Gabriela P. Fernández
    • 3
  • Bruno N. Carpinetti
    • 3
  • Mariano L. Merino
    • 1
    • 4
  1. 1.Centro de Bioinvestigaciones (CeBio)Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA-CICBA)/Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires CITNOBA (UNNOBA-CONICET)Buenos AiresArgentina
  2. 2.Consejo National de Investigaciones Cientifícas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Gestión Ambiental/Ecología, Instituto de Ciencias Sociales y AdministraciónUniversidad National Arturo JauretcheBuenos AiresArgentina
  4. 4.Comisión de Investigaciones Cientifícas de la Provincia de Buenos Aires (CICPBA)Buenos AiresArgentina

Personalised recommendations