Advertisement

Mammalian Biology

, Volume 99, Issue 1, pp 1–11 | Cite as

State of knowledge and potential distribution of the Colombian endemic brown hairy dwarf porcupine Coendou vestitus (Rodentia)

  • Héctor E. Ramírez-ChavesEmail author
  • María M. Torres-Martínez
  • Elkin A. Noguera-Urbano
  • Fernando C. Passos
  • Javier E. Colmenares-Pinzóna
Original investigation

Abstract

The brown hairy dwarf porcupine Coendou vestitus is a small-sized endemic species, poorly studied since its description more than 11 Oyears ago. It is known from only five localities in the Andes of Colombia. Here, we update the state of knowledge, and provide information on the known and potential distribution of this rare species. We reviewed the literature and examined both specimens from natural history collections and photographs from the field to identify unreported localities. Additionally, we used environmental niche modelling to identify similar environmental conditions to those of the known localities. We also provided a genetic verification of the most recent vouchered record by means of a cytochrome-b sequence. We found 14 published works related to C. vestitus with “Taxonomy and Systematics”, and “Biogeography, distribution and records” as the most common (11 publications) topics. Its occurrence was confirmed at six localities in the Eastern Cordillera, and one locality is considered dubious. The records and the potential distribution indicate that C. vestitus is distributed in the montane ecosystems of the Central and Eastern Cordillera of Colombia. The cytochrome-b sequence constitutes the second and most complete molecular record of the species. Our results show that C. vestitus is one of the least studied porcupines, and it has the most restricted distribution in America. It might be considered the rarest species of the genus, therefore further research to better understand the different aspects of the ecology and the conservation status of this rare porcupine are urgent.

Keywords

Andes Distribution models Ecology Taxonomy Vouchers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberico, M., Moreno, J.G., 2006. Puerco espín pardo Coendou vestitus. In: Rodríguez-Mahecha, J.V., Alberico, M., Trujillo, F., Jorgenson, J. (Eds.), Libro Rojo de los Mamiferos de Colombia. Serie Libros Rojos de Especies Amenazadas de Colombia. Conservacion Internacional Colombia, Ministerio de Ambiente, Vivienda y Desarrollo Territorial, Bogota D.C., Colombia, pp. 293–295.Google Scholar
  2. Alberico, M., Rojas-Díaz, V., Moreno, J.G., 1999. Aporte sobre lataxonomiay distribución de los puercosespines (Rodentia: Erethizontidae) en Colombia. Rev. Acad. Colomb. Cienc. Exact. Fis. Nat. 23 (Suppl), 595–612.Google Scholar
  3. Armenteras, D., Cast, F., Villareal, H., 2003. Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes Colombia. Biol. Conserv. 113, 245–256CrossRefGoogle Scholar
  4. Barthelmess, E.X., 2016. Family Erethizontidae. In: Wilson, D.E., Lacher Jr., T.E., Mittermeier, R.A. (Eds.), Handbook of Mammals of the World, vol. 6. Lagomorphs and Rodents: Part 1. Lynx, Barcelona, Spain, pp. 372–397.Google Scholar
  5. Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T., Soberon, J., Villalobos, F., 2011. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Modell. 222, 1810–1819, https://doi.org/10.1016/j.ecolmodel.2011.02.011.CrossRefGoogle Scholar
  6. Bean, W.T., Stafford, R., Brashares, J.S., 2012. The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models. Ecography 35, 250–258, https://doi.org/10.1111/j.1600-0587.2011.06545.x.CrossRefGoogle Scholar
  7. Bradley, R.D., Baker, R.J., 2001. A test of the genetic species concept: Cytochrome-b sequences and mammals. J. Mamm. 82, 960–973,  https://doi.org/10.1644/1545-1542(2001)082<0960:ATOTGS>2.0.CO;2.CrossRefGoogle Scholar
  8. Cabrera, A., 1961. Catalogo de los mamiferos de America del Sur. Rev. Mus. Argentino de Ciencias Naturales Bernardino Rivadavia,”. Cienc. Zool. 4, 309–732.Google Scholar
  9. Darriba, D., Taboada, G.L., Doallo, R., Posada, D., 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772, https://doi.org/10.1038/nmeth.2109.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Elith, J., Graham, C.H., Anderson, R.P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.Mc C.M., Peterson, A.T., Phillips, S.J., Richardson, It, Scachetti-Pereira, R., Schapire, R.E., Soberon, J., Williams, S., Wisz, M.S., Zimmermann, N.E., 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151,  https://doi.org/10.1111/j.2006.0906-7590.04596.x.CrossRefGoogle Scholar
  11. Eisenberg, J.F., 1989. Mammals of the Neotropics. The Northern Neotropics, Vol. 1, Panama, Colombia, Venezuela, Guyana, Suriname, French Guiana. University of Chicago Press, Chicago, USA.Google Scholar
  12. Emmons, L.H., Feer, F., 1997. Neotropical rainforest mammals. In: A Field Guide, 2nd ed. University of Chicago Press, Chicago, USA.Google Scholar
  13. Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315,  https://doi.org/10.1002/joc.5086.CrossRefGoogle Scholar
  14. Fielding, A.H., Bell, J.F., 1997. A review of methods forthe assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49,  https://doi.org/10.1017/S0376892997000088.CrossRefGoogle Scholar
  15. Guisan, A., Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecol. Modell. 135, 147–186,  https://doi.org/10.1016/S0304-3800(00)00354-9.CrossRefGoogle Scholar
  16. Gutierrez, E.E., Anderson, R.P., Voss, R.S., Ochoa, G.J., Aguilera, M., Jansa, S.A., 2014. Phylogeography of Mannosa robinsoni: insights into the biogeography of dry forest in northern South America. J. Mamm. 95, 1175–1188,  https://doi.org/10.1644/14-MAMM-A-069.CrossRefGoogle Scholar
  17. Harden, C.P., 2006. Human impacts on headwater fluvial systems in the northern and central Andes. Geomorphology 79, 249–263,  https://doi.org/10.1016/j.geomorph.2006.06.021.CrossRefGoogle Scholar
  18. Honacki, J.H., Kinman, K.E., Koeppl, J.W., 1982. Mammal Species ofthe World: a Taxonomic and Geographic Reference. Allen Press and Association of Systematic Collections, Lawrence, KS, USA.Google Scholar
  19. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentjies, P., Drummond, A., 2012. Geneious Basic: an integrated and extendable desktop software platform forthe organization and analysis of sequence data. Bioinformatics 28, 1647–1649  https://doi.org/10.1093/bioinformatics/btsl99.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Kimura, M., 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120,  https://doi.org/10.1007/BF01731581.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Kumar, S., Stecher, G., Tamura, It, 2015. MEGA 7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874,  https://doi.org/10.1093/molbev/msw054.CrossRefGoogle Scholar
  22. La Villa, 2018. CAR Rescata Puercoespín En Vereda Volcán 2 En Ubaté. Periódico Regional “La Villa” (accessed 03 April 2019) http://lavilla.com.co/portal/2018/09/07/car-rescata-puercoespiin-en-vereda-volcan-2-en-ubate/Google Scholar
  23. MADS - Ministerio del Ambiente y Desarrollo Sostenible, pp. 1–38. Bogota, Colombia. Available at: http://www.minambiente.gov.co/images/normativa/app/resoluciones/75-res%201912%20de%202017.pdf [accessed 05 February 2019]. 2017. Resolución No. 0192, “Por la cual se establece el listado de las especies silvestres amenazadas de la diversidad biolgica colombiana continental y marino costera que se encuentran en el territorio nacional, y se dictan otras disposiciones”. Bogotá, 15 September 2017.
  24. Muscarella, R., Galante, P.J., Soley-Guardia, M., Boria, R.A., Kass, J.M., Uriarte, M., Anderson, R.P., 2014. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205,  https://doi.org/10.1111/2041-210X.12261.CrossRefGoogle Scholar
  25. Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., D’Amico, J.A., Strand, H.E., Morrison, J.C., Loucks, C.J., Allnutt, T.F., Lamoreux, J.F., Ricketts, T.H., Itoua, I., Wettengel, W.W., Kura, Y., Hedao, P., Kassem, It, 2001. Terrestrial ecoregions ofthe world: a new map of life on Earth. BioScience. 51, 933–938,  https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO:2.CrossRefGoogle Scholar
  26. Pearson, R.G., Raxworthy, C.J., Nakamura, M., Peterson, A.T., 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117,  https://doi.org/10.1111/j.1365-2699.2006.01594.xCrossRefGoogle Scholar
  27. Phillips, S.J., Dudik, M., 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175,  https://doi.org/10.1111/j.0906-7590.2008.5203.x.CrossRefGoogle Scholar
  28. Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259,  https://doi.org/10.1016/j.ecolmodel.2005.03.026.CrossRefGoogle Scholar
  29. Phillips, S.J., Anderson, R.P., Dudik, M., Schapire, R.E., Blair, M.E., 2017. Opening the black box: an open-source release of Maxent. Ecography 40, 887–893, https://doi.org/10.1111/ecog.03049.CrossRefGoogle Scholar
  30. Proosdij, A.S., Sosef, M.S., Wieringa, J.J., Raes, N., 2016. Minimum required number of specimen records to develop accurate species distribution models. Ecography. 39, 542–552,  https://doi.org/10.5061/dryad.8sb8v.CrossRefGoogle Scholar
  31. Ramírez-Chaves, H.E., Suárez-Castro, A.F., Morales-Martínez, D.M., Vallejo-Pareja, M.C., 2016. Richness and distribution of porcupines (Erethizontidae: Coendou) from Colombia. Mammalia 80, 181–191,  https://doi.org/10.1515/mammalia-2014-0158.CrossRefGoogle Scholar
  32. Rodríguez, N., Armenteras-Pascual, D., Alumbreros, J.R., 2013. Land use and land cover change in the Colombian Andes: dynamics and future scenarios. J. Land Use Sci. 8, 154–174,  https://doi.org/10.1080/1747423X.2011.650228.CrossRefGoogle Scholar
  33. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck J.P., 2012. MrBayes 3.2: efficient Bayesian phylogenetic tree inference and model choice across a large space. Syst. Biol. 61, 539–542,  https://doi.org/10.1093/sysbio/sys029.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Shcheglovitova, M., Anderson, R.P., 2013. Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes. Ecol. Modell. 269, 9–17,  https://doi.org/10.1016/j.ecolmodel.2013.08.011.CrossRefGoogle Scholar
  35. Soberon, J.M., 2010. Niche and area of distribution modeling: a population ecology perspective. Ecography 33, 159–167,  https://doi.org/10.1111/j.1600-0587.2009.06074.x.CrossRefGoogle Scholar
  36. Tate, G.H.H., 1935. The taxonomy of the genera of Neotropical hystricoid rodents. Bull. Am. Mus. Nat. Hist. 68, 295–447.Google Scholar
  37. Thiollay, J., 1996. Distributional patterns of raptors along altitudinal gradients in the northern Andes and effects of forest fragmentation. J. Trop. Ecol. 12, 535–560.CrossRefGoogle Scholar
  38. Thomas, O., 1899. Description of new Neotropical mammals. Ann. Mag. Nat. Hist. Ser. Zoo. 7, 278–288.CrossRefGoogle Scholar
  39. Thomas, O., 1905. New neotropical Chrotopterus, Sciurus, Neacomys, Coendou, Proechimys, and Mannosa. Ann. Mag. Nat. Hist 16(7), 308–314.CrossRefGoogle Scholar
  40. Torres-Martínez, M.M., Ramírez-Chaves, H.E., Noguera-Urbano, E.A., Colmenares-Pinzón, J.E., Passos, F.C., García, J., 2019. On the distribution of the Brazilian porcupine Coendou prehensilis (Erethizontidae) in Colombia. Mammalia 83, 290–297,  https://doi.org/10.1515/mammalia-2018-0043.CrossRefGoogle Scholar
  41. Voss, R.S., 2015. Superfamily Erethizontoidea Bonaparte, 1845. In: Patton, J.L., Pardiñas, U.F.J., D’Elía, G.D. (Eds.), Mammals of South America Volume 2. Rodents. The University of Chicago Press, Chicago, USA, pp. 786–805.Google Scholar
  42. Voss, R.S., da Silva, M.N.F., 2001. Revisionary notes on neotropical porcupines (Rodentia, Erethizontidae). 2. A review of the Coendou vestitus group with descriptions of two new species from Amazonia. Am. Mus. Novitat. 3351, 1–36.CrossRefGoogle Scholar
  43. Voss, R.S., Hubbard, C., Jansa, S.A., 2013. Phylogenetic relationships of new world porcupines (Rondentia, Erethizontidae): implications for taxonomy, morphological evolution, and biogeography. Am. Mus. Novitat. 3769, 1–36.CrossRefGoogle Scholar
  44. Voss, R.S., 2011. Revisionary notes on Neotropical porcupines (Rodentia: Erethizontidae). 3. An annotated checklist of the species ofCoendou Lacepede, 1799. Am. Mus. Novitat. 3720, 1–36.CrossRefGoogle Scholar
  45. Weksler, M., Anderson, R.P., Gómez-Laverde, M., 2016. Coendou vestitus. The IUCN Red List of Threatened Species 2016 (accessed 10 February 2018) http://www.iucnredlist.orgGoogle Scholar
  46. Zuur, A.F., Ieno, E.N., Elphick, C.S., 2010. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14,  https://doi.org/10.1111/J.2041-210X.2009.00001.X.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2019

Authors and Affiliations

  • Héctor E. Ramírez-Chaves
    • 1
    • 6
    Email author
  • María M. Torres-Martínez
    • 2
  • Elkin A. Noguera-Urbano
    • 3
  • Fernando C. Passos
    • 2
  • Javier E. Colmenares-Pinzóna
    • 4
    • 5
  1. 1.Departamento de Ciencias Bíológicas, Facultad de Ciencias Exactas y NaturalesUniversidad de CaldasManizales, CaldasColombia
  2. 2.Laboratório de Biodiversidade, Conservação e Ecologia de Animais Silvestres (LABCEAS), Programa de Pós-graduação em Ecologia e ConservaçãoUniversidade Federal do ParanáCuritibaBrazil
  3. 3.Instituto de Investigatión de Recursos BiológicosAlexander von HumboldtBogotá, D.C.Colombia
  4. 4.Grupo de Estudios en Biodiversidad, Escuela de BiologíaUniversidad Industrial de SantanderBucaramanga, SantanderColombia
  5. 5.Laboratorio de Ecología, Escuela de BiologíaUniversidad Industrial de SantanderBucaramanga, SantanderColombia
  6. 6.Centro de Museos, Museo de Historia NaturalUniversidad de Caldas.Manizales, CaldasColombia

Personalised recommendations