We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


Phylogeny and genetic structure of the Yellow ground squirrel, Spermophilus fulvus (Lichtenstein, 1823), in Iran


Old world ground squirrels (genus Spermophilus) are distributed throughout the Holarctic and Palearctic regions, of which two Iranian species, the Yellow ground squirrel S. fulvus and the Asia Minor ground squirrel S. xanthoprymnus, comprise the southernmost distribution of the genus in the Palearctic. The two species are found in fragmented populations from northeastern to northwestern Iran, with S. fulvus being more common and widespread in the country. The enormous geographical distance (more than 1000 km) between Yellow ground squirrel’s patchy populations in eastern and western Iran has led to ambiguous evolutionary relationships and consequently uncertain conservation planning for the species. We studied the phylogenetic relationships and spatial genetic structure of the isolated populations using the mitochondrial Cytochrome b (cyt b) among 79 individuals. Our phylogenetic analysis found that S. fulvus was divided into three main mtDNA clades in Iran. Molecular dating suggested an ancestral expansion from high latitudes towards Iran during the cold periods (before the Holsteinian temperate period), followed by contraction of populations into interglacial refugia around the Holsteinian temperate period (430-350 Kya), leading to their isolation from their ancestral pool about 427 Kya. Furthermore, we found a non-deep phylogenetic divergence between patchy isolated populations of the species in Iran. A major genetic break was detected between populations of eastern Iran (steppes in Hezar Masjed and Binalud mountains, near Iran-Turkmenistan-Afghanistan borderline) and the others, probably associated with their confinement to interglacial refugia during the Domnitz temperate period (340-300 Kya). However, the recent divergence between northeastern and western populations of Iran probably resulted from their contraction into interglacial refugia in the Saale/Drenthe temperate period (250-190 Kya). These results may suggest that populations of the Yellow ground squirrel in Iran fell under the influence of glacial and interglacial cycles along a longitudinal axis. Finally, we propose the three isolated clades of the Yellow ground squirrel identified in Iran as three ESUs.

This is a preview of subscription content, log in to check access.


  1. Alvarado-Bremer, J.R.A, Viñas, J., Mejuto, J., Ely, B., Pla, C., 2005. Comparative phylogeography of Atlantic bluefin tuna and swordfish: the combined effects of vicariance, secondary contact, introgression, and population expansion on the regional phylogenies of two highly migratory pelagic fishes. Mol. Phylogenet. Evol. 36, 169–187.

  2. Avise, J.C., 2000. Phylogeography: the History and Formation of Species. Harvard university press.

  3. Blanchet, G., Sanlaville, P., Traboulsi, M., 1997. Le Moyen-Orient de 20 000 ans BP à 6 000 ans BP Essai de reconstitution paléoclimatique. Palorient 23, 187–196.

  4. Brandley, M.C., Schmitz, A., Reeder, T.W., 2005. Partitioned Bayesian analyses, partition choice, and the phylogenetic relationships of scincid lizards. Syst. Biol. 54, 373–390.

  5. Cheng, L., Connor, T.R., Sirén, J., Aanensen, D.M., Corander, J., 2013. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 30, 1224–1228.

  6. Clement, M., Posada, D., Crandall, K.A., 2000. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659.

  7. Drummond, A.J., Rambaut, A., Suchard, M., 2013. Beast 1.8.0.

  8. Ehlers, E., 1980. Iran: Grundzüge einer geographischen Landeskunde. Broschiert.

  9. Excoffier, L., 2004. Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Mol. Ecol. 13, 853–864.

  10. Excoffier, L., Laval, G., Schneider, S., 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinf. 1, 117693430500100000.

  11. Faerman, M., Bar-Gal, G.K., Boaretto, E., Boeskorov, G.G., Dokuchaev, N.E., Ermakov, O.A., Golenishchev, F.N., Gubin, S.V., Mintz, E., Simonov, E., Surin, V.L., Titov, S.V., Zanina, O.G., Formozov, N.A., 2017. DNA analysis of a 30, 000-year-old Urocitellus glacialis from northeastern Siberia reveals phylogenetic relationships between ancient and present-day arctic ground squirrels. Sci. Rep. 7, 42639.

  12. Fraser, D.J., Bernatchez, L, 2001. Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol. Ecol. 10, 2741–2752.

  13. Fu, Y.X., 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925.

  14. Goodwin, H.T., 1995. Pliocene-Pleistocene biogeographic history of prairie dogs, genus Cynomys (Sciuridae). J. Mammal. 76, 100–122.

  15. Gündüz, İ., Jaarola, M., Tez, C, Yeniyurt, C, Polly, P.D., Searle, J.B., 2007. Multigenic and morphometric differentiation of ground squirrels (Spermophilus, Scuiridae, Rodentia) in Turkey, with a description of a new species. Mol. Phylogenet. Evol. 43, 916–935.

  16. Harpending, H.C., 1994. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum. Biol. 66, 591–600.

  17. Harrison, R.G., Bogdanowicz, S.M., Hoffmann, R.S., Yensen, E., Sherman, P.W., 2003. Phylogeny and evolutionary history of the ground squirrels (Rodentia: Marmotinae). J. Mamm. Evol. 10, 249–276.

  18. Helgen, K.M., Cole, F.R., Helgen, L.E., Wilson, D.E., 2009. Generic revision in the Holarctic ground squirrel genus Spermophilus. J. Mammal. 90, 270–305.

  19. Herron, M.D., Castoe, T.A., Parkinson, C.L., 2004. Sciurid phylogeny and the paraphyly of Holarctic ground squirrels (Spermophilus). Mol. Phylogenet. Evol. 31, 1015–1030.

  20. Hung, C, Drovetski, S.V., Zink, R.M., 2012. Multilocus coalescence analyses support a mtDNA-based phylogeographic history fora widespread palearctic passerine bird, Sitta europaea. Evolution 66, 2850–2864.

  21. Huson, D.H., Bryant, D., 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267.

  22. IUCN, 2019. The IUCN Red List of Threatened Species. Version 2019-2 (Accessed 08 August 2019) https://doi.org/www.iucnredlist.org.

  23. Kapustina, S.Y., Brandler, O.V., Adiya, Y., 2015. Phylogeny of genus Spermophilus and position of Alashan ground squirrel (Spermophilus alashanicus, Büchner, 1888) on phylogenetic tree of Paleartic short-tailed ground squirrels. Mol. Biol. 49, 391–396.

  24. Karami, M., Ghadirian, T., Faizolahi, K., 2016. The Atlas of Mammals of Iran. Jahad daneshgahi, kharazmi Branch.

  25. Kehl, M., 2009. Quaternary climate change in Iran - the state of knowledge. Erdkunde 63, 1–17.

  26. Kryštufek, B., Bryja, J., Bužan, E.V., 2009. Mitochondrial phylogeography of the European ground squirrel, Spermophilus citellus, yields evidence on refugia for steppic taxa in the southern Balkans. Heredity 103, 129–135.

  27. Kryštufek, B., Vohralík, V., 2012. Taxonomic revision of the Palaearctic rodents (Rodentia): Sciuridae: Xerinae 1 (Eutamias and Spermophilus). Lynx, n. s. (Praha) 43 (1-2), 17–111.

  28. Lanfear, R., Calcott, B., Ho, S.Y.W., Guindon, S., 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701.

  29. Leigh, J.W., Bryant, D., 2015. POPART: full-feature software forhaplotype network construction. Methods Ecol. Evol. 6, 1110–1116.

  30. Librado, P., Rozas, J., 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.

  31. Lieberman, B.S., 2002. Phylogenetic biogeography with and without the fossil record: gauging the effects of extinction and paleontological incompleteness. Palaeogeogr. Palaeoclimatol. Palaeoecol. 178, 39–52.

  32. Lowe, J.J., Walker, M.J.C., 1997. Reconstructing Quaternary Environments. Longman, Harlow.

  33. Moghimi, E., 2008. Climatic Geomorphology Cold and Glacial Territory. University of Tehran Press.

  34. Moghimi, E., 2010. Geomorphology of Iran. University of Tehran Press.

  35. Moritz, C., 1994. Defining ‘evolutionarily significant units’ for conservation. Trends Ecol. Evol. 9, 373–375.

  36. Musil, R., 1985. Paleobiogeography of terrestrial communities in Europe during the Last Glacial. Acta Entomol. Musei Natl. Pragae XLI B 1, 1–83.

  37. Nazarizadeh, M., Kaboli, M., Rezaie, H.R., Harisini, J.I., Pasquet, E., 2016. Phylogenetic relationships of Eurasian Nuthatches (Sitta europaea Linnaeus, 1758) from the Alborz and Zagros Mountains, Iran. Zool. Middle East 62, 217–226.

  38. Nguyen, L.T., Schmidt, H.A., von Haeseler, A., Minh, B.Q., 2014. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 32, 268–274, https://doi.org/10.1093/molbev/msu300.

  39. Rambaut, A., Drummond, A.J., Available: 2007. Tracer. v. 1.5. https://doi.org/beast.bio.ed.ac.uk/Tracer.

  40. Rogers, A.R., 1995. Genetic evidence fora Pleistocene population explosion. Evolution 49, 608–615.

  41. Rogers, A.R., Harpending, H., 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569.

  42. Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.

  43. Ryder, O.A., 1986. Species conservation and systematics: the dilemma of subspecies. Trends Ecol. Evol. 1, 9–10.

  44. Sambrook, J., Fritsch, E.F., Maniatis, T., 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press.

  45. Sgro, C.M., Lowe, A.J., Hoffmann, A.A., 2011. Building evolutionary resilience for conserving biodiversity under climate change. Evol. Appl. 4, 326–337.

  46. Shimodaira, H., Hasegawa, M., 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol. Biol. Evol. 16, 1114–1116.

  47. Slatkin, M., Hudson, R.R., 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129, 555–562.

  48. Smith, J.M., Haigh, J., 1974. The hitch-hiking effect of a favourable gene. Genet. Res. 23 (1), 23–35.

  49. Stewart, J.R., Lister, A.M., Barnes, I., Dalén, L., 2010. Refugia revisited: individualistic responses of species in space and time. Proc. Biol. Sci. 277, 661–671.

  50. Swofford, D.L., 2002. PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods). Version 4. Sinauer Assoc, Sunderland, MA.

  51. Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595.

  52. Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.

  53. Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

  54. Thorington, R.W.J., Koprowski, J.L., Steele, M.A., Whatton, J.F., 2012. Squirrels of the World. JHU Press.

  55. Xia, X., Lemey, P., 2009. Assessing substitution saturation with DAMBE. Phylogenetic Handb. a Pract. Approach to DNA and Protein Phylogeny, vol. 2., pp. 615–630.

  56. Xia, X., Xie, Z., 2001. DAMBE: software package for data analysis in molecular biology and evolution. J. Hered. 92, 371–373.

  57. Yamani, M., 2002. The geomorphology of Alamkooh glaciers. Geogr. Res. Q. 34, 1–18.

Download references

Author information

Correspondence to Mohammad Kaboli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asgharzadeh, A., Kaboli, M., Rajabi-Maham, H. et al. Phylogeny and genetic structure of the Yellow ground squirrel, Spermophilus fulvus (Lichtenstein, 1823), in Iran. Mamm Biol 98, 137–145 (2019). https://doi.org/10.1016/j.mambio.2019.09.007

Download citation

  • Spermophilus fulvus
  • Phylogeny
  • Phylogeography
  • Divergence time
  • Continental interglacial refugia
  • Quaternary climate oscillations