Advertisement

Mammalian Biology

, Volume 98, Issue 1, pp 119–127 | Cite as

Coexistence and habitat use of the South American coati and the mountain coati along an elevational gradient

  • José Luis MenaEmail author
  • Hiromi Yagui
Original investigation

Abstract

The South American coati Nasua nasua is a relatively common species throughout the Neotropical region. Despite this, ecological information on the species, including its biological interactions and habitat use, is scarce, especially for the Andes. In some regions, Nasua nasua is sympatric with other closely related species of the Procyonidae family, including the mountain coati Nasuella olivacea. Here, we assess the influence of environmental and anthropogenic factors on the occupancy of these two species and the spatial and temporal bases of their co-occurrence along an elevational gradient. Camera trapping (with 85 camera-trap stations) was conducted during the dry season of 2016 along elevations from 1600 to 3600 m above sea level (m. a. s. l.) in northern Peru. We observed a total of 244 detections for Nasua nasua and 17 for Nasuella olivacea over 9457 cumulative camera-days. Occupancy modelling (Royle-Nichols model) showed that Nasua nasua occupancy was significantly and negatively related to elevation but positively related to forest cover. In contrast, Nasuella olivacea occupancy was significantly and positively related to elevation. In addition, Nasuella olivacea was detected in only 5 of the 45 total sites occupied by Nasua nasua; therefore, spatial overlap was low. Consequently, co-occurrence modelling based on a Bayesian approach showed no evidence of avoidance between the two coati species. Additionally, activity patterns suggest low levels of temporal overlap; however, we consider this a preliminary finding due to the limited number of detections for Nasuella olivacea. Our results not only increase the understanding of the ecology of both Nasua nasua and Nasuella olivacea but also provide information towards their conservation in this part of their distribution range.

Keywords

Coatis Co-occurrence Montane forest Nasua nasua Nasuella olivacea Occupancy modelling Paramo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguiar, L.M., Moro-Rios, R.F., Silvestre, T., Silva-Pereira, J.E., Bilski, D.R., Passos, F.C., Sekiama, M.L., Rocha, V.J., 2011. Diet of brown-nosed coatis and crab-eating raccoons from a mosaic landscape with exotic plantations in southern Brazil. Stud. Neotrop. Fauna Environ. 46, 153–161.CrossRefGoogle Scholar
  2. Ahumada, J.A., Hurtado, J., Lizcano, D., 2013. Monitoring the status and trends of tropical forest terrestrial vertebrate communities from camera trap data: a tool for conservation. PLoS One 8, e73707.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alves-Costa, C.P., Da Fonseca, G.A., Christófaro, C., 2004. Variation in the diet of the brown-nosed coati (Nasua nasua) in southeastern Brazil. J. Mammal. 85, 478–482.CrossRefGoogle Scholar
  4. Alves-Costa, C.P., Eterovick, P.C., 2007. Seed dispersal services by coatis (Nasua nasua, Procyonidae) and their redundancy with other frugivores in southeastern Brazil. Acta Oecol. 32, 77–92.CrossRefGoogle Scholar
  5. Balaguera-Reina, S.A., Cepeda, A., Zárrate-Charry, D., González-Maya, J.F., 2009. The state of knowledge of Western Mountain Coati Nasuella olivacea in Colombia, and extent of occurrence in the Northern Andes. Small Carniv. Conserv. 41, 35–40.Google Scholar
  6. Balme, G.A., Hunter, L.T., Slotow, R., 2009. Evaluating methods for counting cryptic carnivores. J. Wildl. Manage. 73, 433–441.CrossRefGoogle Scholar
  7. Barrientos, R., Virgós, E., 2006. Reduction of potential food interference in two sympatric carnivores by sequential use of shared resources. Acta Oecol. 30, 107–116.CrossRefGoogle Scholar
  8. Beisiegel, B., 2001. Notes on the coati, Nasua nasua (Carnivora: Procyonidae) in an Atlantic forest area. Braz. J. Biol. 61, 689–692.PubMedCrossRefGoogle Scholar
  9. Bianchi, Rd.C, Olifiers, N., Gompper, M.E., Mourão, G., 2016. Niche partitioning among mesocarnivores in a Brazilian Wetland. PLoS One 11, e0162893.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bisbal, F.J., 1993. Impacto humano sobre los carnívoros de Venezuela. Stud. Neotrop. Fauna Environ. 28, 145–156.CrossRefGoogle Scholar
  11. Bischof, R., Ali, H., Kabir, M., Hameed, S., Nawaz, M.A., 2014. Being the underdog: an elusive small carnivore uses space with prey and time without enemies. J. Zool. 293, 40–48.CrossRefGoogle Scholar
  12. Boron, V., Deere, N.J., Xofis, P., Link, A., Quiñones-Guerrero, A., Payan, E., Tzanopoulos, J., 2019. Richness, diversity, and factors influencing occupancy of mammal communities across human-modified landscapes in Colombia. Biol. Conserv. 232, 108–116.CrossRefGoogle Scholar
  13. Brodie, J.F., Helmy, O.E., Mohd-Azlan, J., Granados, A., Bernard, H., Giordano, A.J., Zipkin, E., 2018. Models for assessing local-scale co-abundance of animal species while accounting for differential detectability and varied responses to the environment. Biotropica 50, 5–15.CrossRefGoogle Scholar
  14. Burnham, K.P., Anderson, D.R., 2020. Model Selection and Multimodal Inference: A Practical Information-Theoretic Approach. Springer, New York.Google Scholar
  15. Burton, A.C., Neilson, E., Moreira, D., Ladle, A., Steenweg, R., Fisher, J.T., Bayne, E., Boutin, S., 2015. Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 52, 675–685.CrossRefGoogle Scholar
  16. Caravaggi, A., Banks, P.B., Burton, A.C., Finlay, C.M., Haswell, P.M., Hayward, M.W., Rowcliffe, M.J., Wood, M.D., 2017. A review of camera trapping for conservation behaviour research. Remote Sens. Ecol. Conserv. 3, 109–122.CrossRefGoogle Scholar
  17. Cove, M.V., Spínola, R.M., Jackson, V.L., Sáenz, J.C., Chassot, O., 2013. Integrating occupancy modeling and camera-trap data to estimate medium and large mammal detection and richness in a Central American biological corridor. Trop. Conserv. Sci. 6, 781–795.CrossRefGoogle Scholar
  18. Curveira-Santos, G., Pedroso, N.M., Barros, A.L., Santos-Reis, M., 2019. Mesocarnivore community structure under predator control: unintended patterns in a conservation context. PLoS One 14, e0210661.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chen, C., Quan, R.-C., Cao, G., Yang, H., Burton, A.C., Meitner, M., Brodie, J.F., 2019. Effects of law enforcement and community outreach on mammal diversity in a biodiversity hotspot. Conserv. Biol. 33, 612–622.PubMedCrossRefGoogle Scholar
  20. Dechner, A., Flesher, K.M., Lindell, C., de Oliveira, T.V., Maurer, B.A., 2018. Determining carnivore habitat use in a rubber/forest landscape in Brazil using multispecies occupancy models. PLoS One 13, e0195311.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Emmons, L., Feer, F., 1997. Neotropical Rainforest Mammals: A Field Guide. The University of Chicago Press.Google Scholar
  22. Farris, Z.J., Gerber, B.D., Karpanty, S., Murphy, A., Andrianjakarivelo, V., Ratelolahy, F., Kelly, M.J., 2015. When carnivores roam: temporal patterns and overlap among Madagascar’s native and exotic carnivores. J. Zool. 296, 45–57.CrossRefGoogle Scholar
  23. Ferreira, G.B., Ahumada, J.A., Oliveira, M.J.R., de Pinho, F.F., Barata, I.M., Carbone, C., Collen, B., 2017. Assessing the conservation value of secondary savanna for large mammals in the Brazilian Cerrado. Biotropica 49, 734–744.CrossRefGoogle Scholar
  24. Fiske, I., Chandler, R., 2011. Unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance. J. Stat. Softw. 43, 1–23.CrossRefGoogle Scholar
  25. Frey, S., Fisher, J.T., Burton, A.C., Volpe, J.P., 2017. Investigating animal activity patterns and temporal niche partitioning using camera-trap data: challenges and opportunities. Remote Sens. Ecol. Conserv. 3, 123–132.CrossRefGoogle Scholar
  26. Gaston, K.J., 2003. The Structure and Dynamics of Geographic Ranges. Oxford University Press, New York, NY U.S.A.Google Scholar
  27. Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B., 2014. Bayesian Data Analysis, third ed. CRC Press. Taylor & Francis.Google Scholar
  28. Glaston, A., 1994. The Red Panda, Olingos, Coatis, Raccoons, and their Relatives. IUCN Status Survey and Conservation Action Plan for Procyonids and Ailurids.Google Scholar
  29. Gompper, M.E., Decker, D.M., 1998. Nasua nasua. Mamm. Species 580, 1–9.CrossRefGoogle Scholar
  30. González-Maya, J.F., Vela-Vargas, I.M., Jiménez Alvarado, J.S., Hurtado-Moreno, A.P., Moreno, C., Aconchaabril, I., Zárrate-Charry, D.A., Vela-Vargas, I.M., Schipper, J., 2015. First sympatric records of Coatis (Nasuella olivacea and Nasua nasua; Carnivora: Procyonidae) from Colombia. Small Carniv. Conserv. 52, 93–100.Google Scholar
  31. Guilherme Trovati, R., Alves de Brito, B., Barbanti Duarte, J.M., 2010. Habitat use and home range of brown-nosed coati, Nasua nasua (Carnivora: Procyonidae) in the Brazilian Cerrado biome. Rev. Biol. Trop. 58, 1069–1077.Google Scholar
  32. Haidir, I.A., Macdonald, D.W., Linkie, M., 2018. Assessing the spatiotemporal interactions of mesopredators in Sumatra’s tropical rainforest. PLoS One 13, e0202876.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Heiberger, R.M., Holland, B., 2015. Statistical Analysis and Data Display: An Intermediate Course with Examples in R, second ed. Springer, New York.CrossRefGoogle Scholar
  34. Helgen, K.M., Kays, R., Helgen, L.E., Tsuchiya-Jerep, M.T.N., Pinto, C.M., Koepfli, K.P., Eizirik, E., Maldonado, J.E., 2009. Taxonomic boundaries and geographic distributions revealed by an integrative systematic overview of the mountain coatis, Nasuella (Carnivora: Procyonidae). Small Carniv. Conserv. 41, 65–74.Google Scholar
  35. Herzog, S.K., Martinez, R., Jørgensen, P.M., Tiessen, H., 2011. Climate Change and Biodiversity in the Tropical Andes. Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE), pp.348.Google Scholar
  36. Hobbs, N.T., Hooten, M.B., 2015. Bayesian Models: A Statistical Primer for Ecologists. Princeto University Press.CrossRefGoogle Scholar
  37. Jonathan Davies, T., Meiri, S., Barraclough, T.G., Gittleman, J.L., 2007. Species co-existence and character divergence across carnivores. Ecol. Lett. 10, 146–152.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Josse, C., Navarro, G., Encarnación, F., Tovar, A., Comer, P., Ferreira, W., Rodríguez, F., Saito, J., Sanjurjo, J., Dyson, J., Rubin de Celis, E., Zárate, R., Chang, J., Ahuite, M., Vargas, C., Paredes, F., Castro, W., Maco, J., Reátegui, F., 2007. Sistemas Ecológicos de la Cuenca Amazónica de Perú y Bolivia. Clasificación y mapeo. EE UU, NatureServe, Arlington, Virginia.Google Scholar
  39. Kellner, K., 2015. Jags UI: A Wrapper Around Rjags to Streamline JAGS Analyses. R Package Version 1.4.2. https://doi.org/cran.r-project.org/web/packages/jagsUI/jagsUI.pdf.Google Scholar
  40. Kelly, M.J., 2008. Design, evaluate, refine: camera trap studies for elusive species. Anim. Conserv. 11, 182–184.CrossRefGoogle Scholar
  41. Kéry, M., Royle, J.A., 2016. Applied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance and Species Richness in R and BUGS, Vol. 1. Prelude and Static Models. Academic Press, Boston.CrossRefGoogle Scholar
  42. Kéry, M., Schaub, M., 2012. Bayesian Population Analysis Using WinBUGS. A Hierarchical Perspective. Elsevier.Google Scholar
  43. Kosydar, A.J., Rumiz, D.I., Conquest, L.L., Tewksbury, J.J., 2014. Effects of hunting and fragmentation on terrestrial mammals in the Chiquitano forests of Bolivia. Trop. Conserv. Sci. 7, 288–307.CrossRefGoogle Scholar
  44. Lashley, M.A., Cove, M.V., Chitwood, M.C., Penido, G., Gardner, B., DePerno, C.S., Moorman, C.E., 2018. Estimating wildlife activity curves: comparison of methods and sample size. Sci. Rep. 8, 4173.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Li, X., Bleisch, W.V., Jiang, X., 2018. Using large spatial scale camera trap data and hierarchical occupancy models to evaluate species richness and occupancy of rare and elusive wildlife communities in southwest China. Divers. Distrib. 24, 1560–1572.CrossRefGoogle Scholar
  46. MacKenzie, D.I., Nichols, J.D., 2004. Occupancy as a surrogate for abundance estimation. Anim. Biodivers. Conserv. 27, 461–467.Google Scholar
  47. MacKenzie, D.I., Nichols, J.D., Royle, J.A., Pollock, K.H., Bailey, L.L., Hines, J.E., 2018. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence, 2nd edition ed. Academic Press, Boston.Google Scholar
  48. Mann, G.K.H., O’Riain, M.J., Parker, D.M., 2015. The road less travelled: assessing variation in mammal detection probabilities with camera traps in a semi-arid biodiversity hotspot. Biodivers. Conserv. 24, 531–545.CrossRefGoogle Scholar
  49. Massara, R.L., Paschoal, A.M.O., Bailey, L.L., Doherty, P.F., Chiarello, A.G., 2016. Ecological interactions between ocelots and sympatric mesocarnivores in protected areas of the Atlantic Forest, southeastern Brazil. J. Mammal. 97, 1634–1644.CrossRefGoogle Scholar
  50. Mazerolle, M.J., 2019. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). R Package Version 2.2-2. https://doi.org/CRAN.R-project.org/package=AICcmodavg.Google Scholar
  51. Medel, R.G., Jaksic, F.M., 1988. Ecologíade los cánidos sudamericanos: una revisión. Rev. Chil. Hist. Nat. 61, 67–79.Google Scholar
  52. Meredith, M., Ridout, M., 2014. Overlap: Estimates of Coefficient of Overlapping for Animal Activity Patterns. R Package Version 0.2.4.Google Scholar
  53. Northrup, J.M., Gerber, B.D., 2018. A comment on priors for Bayesian occupancy models. PLoS One 13, e0192819.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Pacheco, V., Cadenillas, R., Salas, E., Tello, C., Zeballos, H., 2009. Diversidad y endemismo de los mamíferos del Perú. Rev. Peru. Biol. 16, 5–32.Google Scholar
  55. Plummer, M., 2003. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Proceedings of the 3rd international workshop on distributed statistical computing (DSC 2003) https://doi.org/www.r-project.org/conferences/DSC-2003/Proceedings/Plummer.pdf.Google Scholar
  56. R Core Team, 2019. R: a language and environment for statistical computing. In: R Foundation for Statistical Computing URL, URL https://doi.org/www.R-project.org/.Google Scholar
  57. Vienna, Austria. Ramírez-Mejía, A.F., Sánchez, F., 2016. Activity patterns and habitat use of mammals in an Andean forest and a Eucalyptus reforestation in Colombia. Hystrix Ital. J. Mammal. 27 (2), 1–7.Google Scholar
  58. Ridout, M.S., Linkie, M., 2009. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 14, 322–337.CrossRefGoogle Scholar
  59. Rocha-Mendes, F., Mikich, S.B., Quadros, J., Pedro, W.A., 2010. Feeding ecology of carnivores (Mammalia, Carnivora) in Atlantic forest remnants, southern Brazil. Biota Neotrop. 10, 21–30.CrossRefGoogle Scholar
  60. Rodríguez-Bolaños, A., 1995. Rango de acción y hábitos alimenticios del coatí de montaña Nasuella olivacea en la Reserva Biológica Carpanta (Cundinamarca). Trabajo de grado, Departamento de Biología. Universidad Distrital Francisco José de Caldas, Bogotá.Google Scholar
  61. Rodríguez-Bolaños, A., Sánchez, P., Cadena, A., 2003. Patterns of activity and home range of Mountain Coati Nasuella olivacea. Small Carniv. Conserv. 29, 16–19.Google Scholar
  62. Rovero, F., Zimmermann, F., 2016. Camera Trapping for Wildlife Research. Exeter. Pelagic Publishing, UK.Google Scholar
  63. Rowcliffe, J.M., Kays, R., Kranstauber, B., Carbone, C., Jansen, P.A., Fisher, D., 2014. Quantifying levels of animal activity using camera trap data. Methods Ecol. Evol. 5, 1170–1179.CrossRefGoogle Scholar
  64. Royle, J.A., Nichols, J.D., 2003. Estimating abundance from repeated presence-absence data or point counts. Ecology 84, 777–790.CrossRefGoogle Scholar
  65. Sánchez, F., Alvear, M., 2003. Comentarios sobre el uso de hábitat, dieta y conocimiento popular de los mamíferos en un bosque andino de Caldas, Colombia, Vol. 7. Boletín Científico, Museo de Historia Natural, Universidad de Caldas, pp. 121–144.Google Scholar
  66. Schoener, T.W., 1974. Resource partitioning in ecological communities. Science 185, 27–39.PubMedCrossRefGoogle Scholar
  67. Silva-Caballero, A., León-Ávila, G., Valenzuela-Galván, D., Maldonado, J.E., Ortega, J., 2017. Patterns of genetic diversity of the white-nosed coati reveals phylogeographically structured subpopulations in Mexico. Nat. Resour. 8, 31.Google Scholar
  68. Tirira, D., 2017. A Field Guide to the Mammals of Ecuador. Editorial Murciélago Blanco, Quito, Ecuador. Tobler, M.W., 2015. Camera Base Version 1.7, Botanical Research Institute of Texas. https://doi.org/www.atrium-biodiversity.org/tools/camerabase.Google Scholar
  69. Tobler, M.W., Carrillo-Percastegui, S.E., Powell, G., 2009. Habitat use, activity patterns and use of mineral licks by five species of ungulate in south-eastern Peru. J. Trop. Ecol. 25, 261–270.CrossRefGoogle Scholar
  70. Waddle, J.H., Dorazio, R.M., Walls, S.C., Rice, K.G., Beauchamp, J., Schuman, M.J., Mazzotti, F.J., 2010. A new parameterization for estimating co-occurrence of interacting species. Ecol. Appl. 20, 1467–1475.PubMedCrossRefGoogle Scholar
  71. Wilson, D.E., Mittermeier, R.A., 2009. Handbook of the Mammals of the World, Vol. 1. Lynx Edicions, Barcelona, Carnivores.Google Scholar
  72. Zapata-Ríos, G., Branch, L.C., 2016. Altered activity patterns and reduced abundance of native mammals in sites with feral dogs in the high Andes. Biol. Conserv. 193, 9–16.CrossRefGoogle Scholar
  73. Zuur, A.F., Hilbe, J.M., Ieno, E.N., 2013. A Beginner’s Guide to GLM and GLMM with R: A Frequentist and Bayesian Perspective for Ecologists. Highland Statistics Newburgh.Google Scholar
  74. Zuur, A.F., Ieno, E.N., Elphick, C.S., 2010. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2019

Authors and Affiliations

  1. 1.Museo de Historia Natural Vera Alleman HaeghebaertUniversidad Ricardo PalmaLima 33Peru
  2. 2.World Wildlife Fund, PerúLima 14Peru

Personalised recommendations