Advertisement

Mammalian Biology

, Volume 98, Issue 1, pp 111–118 | Cite as

Habitat selection of Cape porcupines in a farmland-suburban context in KwaZulu-Natal, South Africa

  • Samukelisiwe P. Ngcobo
  • Amy-Leigh Wilson
  • Colleen T. DownsEmail author
Original investigation

Abstract

Cape porcupines (Hystrix africaeaustralis) have a wide geographic distribution throughout southern Africa and have a wide ecological tolerance of many terrestrial habitats, including those within human-altered landscapes. Due to their adaptability within anthropogenic landscapes, knowledge of their spatial behaviour will provide fundamental information about this species. With the aid of telemetry data (July 2016-January 2017) from 11 Cape porcupines, we investigated their habitat selection in a farmland-suburban context in KwaZulu-Natal, South Africa. Two levels of selection were determined, 1) at the landscape area scale (2nd order of selection) and 2) at the home range scale (3rd order of selection). Our results showed a variation in their habitat selection at the two spatial scales. Although all Cape porcupines selected the forest with bushland habitat at the landscape scale, we observed a few individuals selecting the residential and grassland habitats or used these habitat types in proportion to their availability, at the home range scale. Agricultural areas (farmlands and timber plantations) were used by Cape porcupines, but were not selected. In suburban areas, the availability of naturally woody vegetation appeared to be the main driver of the species persistence within these landscapes. Also, we addressed possible human-porcupine conflict and provide management recommendations for cultivated farmlands and suburban gardens, where the species appear to be most conflict-prone.

Keywords

Hystrix africaeaustralis Food availability Human-porcupine conflict GPS telemetry Land-use changes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barthelmess, E.L., 2006. Hystrix africaeaustralis. Mamm. Species 788, 1–7.CrossRefGoogle Scholar
  2. Beyer, H.L., 2010. Geospatial Modelling Environment (Accessed 14 August 2018) https://doi.org/www.spatialecology.com/gme.Google Scholar
  3. Boyce, M.S., Johnson, C.J., Merrill, E.H., Nielsen, S.E., Solberg, E.J., Van Moorter, B., 2016. Can habitat selection predict abundance? J. Anim. Ecol. 85, 11–20.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bragg, C., MSc Thesis 2003. Cape Porcupine Density, Burrow Distribution and Space Use in a Geophyte-Diverse Semi-Arid Environment. University of Cape Town, Cape Town.Google Scholar
  5. Bragg, C.J., Donaldson, J.D., Ryan, P.G., 2005. Density of Cape porcupines in a semiarid environment and their impact on soil turnover and related ecosystem processes. J. Arid Environ. 61, 261–275.CrossRefGoogle Scholar
  6. Bragg, C., Child, M.F., 2016. A conservation assessment of Hystrix africaeaustralis. In: Child, M.F., Roxburgh, L., Linh, Do, San, E., Raimondo, D., Davies-Mostert, H.T. (Eds.), The Red List of Mammals of South Africa, Swaziland and Lesotho. South African National Biodiversity Institute and Endangered Wildlife Trust, South Africa.Google Scholar
  7. Byers, C.R., Steinhorst, R.K., Krausman, P.R., 1984. Clarification of a technique for analysis of utilization-availability data. J. Wildl. Manage. 48, 1050–1053.CrossRefGoogle Scholar
  8. Chevallier, N., Ashton, B., 2006. A Report on the Porcupine Quill Trade in South Africa. IFAW (International Fund for Animal Welfare), pp. 26, Available from https://doi.org/media.withtank.com/477275f26c/porcupine_quill_trade.pdf (Accessed 25 June 2019).Google Scholar
  9. Corbet, N.U., MSc Thesis 1991. Space Use and Group Living in the Cape Porcupine (Hystrix africaeaustralis Peters, 1852). University of Pretoria, Pretoria.Google Scholar
  10. Corbet, N.U., Aarde, R.J., 1996. Social organization and space use in the Cape porcupine in a southern African savanna. Afr. J. Ecol. 34, 1–14.CrossRefGoogle Scholar
  11. Cassola, F., 2016. Hystrix africaeaustralis. The IUCN Red List of Threatened Species 2016: e.T10748A115099085.,  https://doi.org/10.2305/IUCN.UK.2016-3.RLTS. T10748A22232321.en (Accessed 29 June 2019).Google Scholar
  12. de Villiers, M.S., Van Aarde, R.J., 1994. Aspects of habitat disturbance by Cape porcupines in a savanna ecosystem. Afr. Zool. 29, 217–220.Google Scholar
  13. de Villiers, M.S., Van Aarde, R.J., Dott, H.M., 1994. Habitat utilization by the Cape porcupine Hystrix africaeaustralis in a savanna ecosystem. J. Zool. 232, 539–549.CrossRefGoogle Scholar
  14. Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T., Daily, G.C., Gibbs, H.K., Helkowski, J.H., 2005. Global consequences of land use. Science 309, 570–574.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Garshelis, D.L, 2000. Delusions in habitat evaluation: measuring use, selection, and importance. In: Boitani, L., Fuller, T.K. (Eds.), Research Techniques in Animal Ecology: Controversies and Consequences. Columbia University Press, New York, pp. 111–153.Google Scholar
  16. Geoterraimage, 2015. 2013–2014 South African National Land Data User Report and Metadata, South Africa (Accessed 14 August 2018) https://doi.org/www.geoterraimage.com.Google Scholar
  17. Goodman, P.S., 2000. Determining the Conservation Value of Land in KwaZulu-Natal. Biodiversity Division. KwaZulu-Natal Nature Conservation Service, Pietermaritzburg. South Africa.Google Scholar
  18. Grácio, A.R., Mira, A., Beja, P., Pita, R., 2017. Diel variation in movement patterns and habitat use by the Iberian endemic Cabrera vole: implications for conservation and monitoring. Mamm. Biol. 83, 21–26.CrossRefGoogle Scholar
  19. Hafeez, S., Anjum, K., Hafeez Khan, T., Manzoor, S., 2015. Food habits of Indian crested porcupine (Hystrix indica) in rainfed Pothowar Plateau, Punjab, Pakistan. J. Agric. Res. 53, 565–579.Google Scholar
  20. Hayne, D.W., 1949. Calculation of size of home range. J. Mammal. 30, 1–18.Google Scholar
  21. Johnson, D.H., 1980. The comparison of usage and availability measurements for evaluating resource preference. Ecology 61, 65–71.CrossRefGoogle Scholar
  22. Kenward, R.E., 2001. A Manual for Wildlife Tagging. Academic Press, New York.Google Scholar
  23. Kapota, D., Dolev, A., Saltz, D., 2017. Inferring detailed space use from movement paths: a unifying, residence time-based framework. Ecol. Evol. 7, 8507–8514.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Killick, D., 1990. A Field Guide to the Flora of the Natal Drakensberg. Jonathan Bell and Ad. Donker, Johannesburg.Google Scholar
  25. Laurenzi, A., Bodino, N., Mori, E., 2016. Much ado about nothing: assessing the impact of a problematic rodent on agriculture and native trees. Mamm. Res. 61, 65–72.CrossRefGoogle Scholar
  26. Leclerc, M., Vander Wal, E., Zedrosser, A., Swenson, J.E., Kindberg, J., Pelletier, F., 2016. Quantifying consistent individual differences in habitat selection. Oecologia 180, 697–705.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Locher, A., Lindenberg, M., 2016. Home Range Creation and Analysis Using Geospatial Modeling Environment and ArcGIS Software (Accessed 25 June 2019) https://doi.org/scholarworks.gvsu.edu/books/11/.Google Scholar
  28. Lovari, S., Sforzi, A., Mori, E., 2013. Habitat richness affects home range size in a monogamous large rodent. Behav. Process. 99, 42–46.CrossRefGoogle Scholar
  29. Lovari, S., Corsini, M.T., Guazzini, B., Romeo, G., Mori, E., 2017. Suburban ecology of the crested porcupine in a heavily poached area: a global approach. Eur. J. Wildl. Res. 63, 10.CrossRefGoogle Scholar
  30. Manly, B.F.J., McDonald, L.L., Thomas, D.L., McDonald, T.L., Erickson, W.P., 2002. Resource Selection by Animals: Statistical Analysis and Design for Field Studies. Kluwer, Boston, Massachusetts, USA.Google Scholar
  31. Mayor, S.J., Schneider, D.C., Schaefer, J.A., Mahoney, S.P., 2009. Habitat selection at multiple scales. Ecoscience 16, 238–247.CrossRefGoogle Scholar
  32. McGarigal, K., Wan, H.Y., Zeller, K.A., Timm, B.C., Cushman, S.A., 2016. Multi-scale habitat selection modelling: a review and outlook. Landsc. Ecol. 31, 1161–1175.CrossRefGoogle Scholar
  33. McLane, A.J., Semeniuk, C., McDermid, G.J., Marceau, D.J., 2011. The role of agent-based models in wildlife ecology and management. Ecol. Model. 222, 1544–1556.CrossRefGoogle Scholar
  34. McMahon, LA., Rachlow, J.L., Shipley, L.A., Forbey, J.S., Johnson, T.R., 2017. Habitat selection differs across hierarchical behaviors: selection of patches and intensity of patch use. Ecosphere 8, e01993.CrossRefGoogle Scholar
  35. Monadjem, A., Taylor, P.J., Denys, C., Cotterill, F.P.D., 2015. Rodents of Sub-Saharan Africa: A Biogeographic and Taxonomic Synthesis. De Gruyter, Berlin, Germany.CrossRefGoogle Scholar
  36. Monetti, L., Massolo, A., Sforzi, A., Lovari, S., 2005. Site selection and fidelity by crested porcupines for denning. Ethol. Ecol. Evol. 17, 149–159.CrossRefGoogle Scholar
  37. Mori, E., Lovari, S., Sforzi, A., Romeo, G., Pisani, C., Massolo, A., Fattorini, L., 2014a. Patterns of spatial overlap in a monogamous large rodent, the crested porcupine. Behav. Process. 107, 112–118.CrossRefGoogle Scholar
  38. Mori, E., Bozzi, R., Laurenzi, A., 2017. Feeding habits of the crested porcupine Hystrix cristata L. 1758 (Mammalia, Rodentia) in a Mediterranean area of Central Italy. Eur. Zool.J. 84, 261–265.CrossRefGoogle Scholar
  39. Morris, D.W., 2003. How can we apply theories of habitat selection to wildlife conservation and management? Wildl. Res. 30, 303–319.CrossRefGoogle Scholar
  40. Mucina, L., Rutherford, M.C., 2006. The Vegetation of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute, Pretoria, South Africa.Google Scholar
  41. Ngcobo, S.P., Wilson, A.L., Downs, C.T., 2019. Home ranges of Cape porcupines on farmlands, peri-urban and suburban areas in KwaZulu-Natal, South Africa. Mamm. Biol. 96, 102–109.CrossRefGoogle Scholar
  42. Patterson, L., Kalle, R., Downs, C.T., 2019. Living in the suburbs: Space use by vervet monkeys (Chlorocebus pygerythrus) in an eco-estate, South Africa. African Journal of Ecology 00, 1–13,  https://doi.org/10.1111/aje.12629.Google Scholar
  43. Pigozzi, G., Patterson, I.J., 1990. Movements and diet of crested porcupines in the Maremma Natural Park, central Italy. Acta Theriol. 35, 173–180.CrossRefGoogle Scholar
  44. Pillay, K.R., Wilson, A.L., Ramesh, T., Downs, C.T., 2015. Digestive parameters and energy assimilation of Cape porcupine on economically important crops. Afr. Zool. 50, 321–326.CrossRefGoogle Scholar
  45. Pop, M.I., Iosif, R., Miu, I.V., Rozylowicz, L., Popescu, V.D., 2018. Combining resource selection functions and home-range data to identify habitat conservation priorities for brown bears. Anim. Conserv. 21, 352–362.CrossRefGoogle Scholar
  46. Ramankutty, N., Mehrabi, Z., Waha, K., Jarvis, L., Kremen, C., Herrero, M., Rieseberg, L.H., 2018. Trends inglobal agricultural land use: implications for environmental health and food security. Ann. Rev. Plant Biol. 69, 789–815.CrossRefGoogle Scholar
  47. Ramesh, T., Downs, C.T., 2013. Impact of farmland use on population density and activity patterns of serval in South Africa. J. Mammal. 94, 1460–1470.CrossRefGoogle Scholar
  48. Ramesh, T., Downs, C.T., 2015. Impact of land use on occupancy and abundance of terrestrial mammals in the Drakensberg Midlands, South Africa. J. Nat. Conserv. 23, 9–18.CrossRefGoogle Scholar
  49. Ramesh, T., Kalle, R., Downs, C.T., 2015. Sex-specific indicators of landscape use by servals: consequences of living in fragmented landscapes. Ecol. Indic. 52, 8–15.CrossRefGoogle Scholar
  50. Saltz, D., Alkon, P.U., 1989. On the spatial behaviour of Indian crested porcupines (Hystrix indica). J. Zool. 217, 255–266.CrossRefGoogle Scholar
  51. Seto, K.C., Fragkias, M., Güneralp, B., Reilly, M.K., 2011. A meta-analysis of global urban land expansion. PLoS One 6, e23777.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Sharma, D., Prasad, S.N., 1992. Tree debarking and habitat use by porcupine (Hystrix indica Kerr) in Sariska National Park in Western India. Mammalia 56, 351–362.CrossRefGoogle Scholar
  53. Skinner, J.D., Chimimba, C.T., 2005. The Mammals of the Southern African Subregion. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  54. Skinner, J.D., Smithers, R.H.N., 1990. The Mammals of the Southern African Subregion, 2nd edn. University of Pretoria, Pretoria.Google Scholar
  55. Smithers, R.H.N., 1983. The Mammals of the Southern African Subregion. University of Pretoria, Pretoria.Google Scholar
  56. Smithers, R.H.N., Apps, P., Abbott, C., Meakin, P., Ashton, N., 2000. Smithers’ Mammals of Southern Africa: A Field Guide. Struik Publishers, Cape Town.Google Scholar
  57. Stuart, C., Stuart, T., 2007. Field Guide to Mammals of Southern Africa, 4th ed. Struik nature, Cape Town.Google Scholar
  58. Thatcher, H., Downs, C.T., Koyama, N.F., 2019. Anthropogenic influences on the time budgets of urban vervet monkeys. Landsc. Urban Plan. 181, 38–44.CrossRefGoogle Scholar
  59. Thomson, W.R., 1974. Tree damage by porcupine in southeast Rhodesia. S. Afr. J. Wildl. Res. 4, 123–127.Google Scholar
  60. Uboni, A., Smith, D.W., Stahler, D.R., Vucetich, J.A., 2017. Selecting habitat to what purpose? The advantage of exploring the habitat-fitness relationship. Ecosphere 8, e01705.CrossRefGoogle Scholar
  61. van Beest, F.M., Uzal, A., Vander Wal, E., Laforge, M.P., Contasti, A.L., Colville, D., McLoughlin, P.D., 2014. Increasing density leads to generalization in both coarse-grained habitat selection and fine-grained resource selection in a large mammal. J. Anim. Ecol. 83, 147–156.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2019

Authors and Affiliations

  • Samukelisiwe P. Ngcobo
    • 1
  • Amy-Leigh Wilson
    • 1
  • Colleen T. Downs
    • 1
    Email author
  1. 1.Centre for Functional Biodiversity, School of Life SciencesUniversity of KwaZulu-NatalPietermaritzburgSouth Africa

Personalised recommendations