Mammalian Biology

, Volume 98, Issue 1, pp 80–90 | Cite as

Dietary habits of wild Javan lutungs (Trachypithecus auratus) in a secondary-plantation mixed forest: Effects of vegetation composition and phenology

  • Yamato TsujiEmail author
  • Masazumi Mitani
  • Kanthi Arum Widayati
  • Bambang Suryobroto
  • Kunio Watanabe
Original investigation


This study investigated the seasonal dietary habits of wild Javan lutungs (Trachypithecus auratus) inhabiting the secondary-plantation mixed forest of Pangandaran Nature Reserve, West Java, Indonesia, in relation to vegetation composition and phenology. We conducted behavioral observations of a habituated group for 16 non-consecutive months. The lutungs fed on 164 items (leaf, fruit, flower, etc.) from 85 different plant species. Number of main plant species (>1% usage) was 20, and accumulated percentage of feeding (all plant parts combined) for the top five, 10, and 20 plant species was 43.4%, 63.8%, and 81.2%, respectively. The percentage of feeding on each plant species was positively correlated with the total number of trees and total crown volume. However, selectivity varied; for instance, plant species with a lower crown volume were preferred. The lutungs mainly fed on young leaves (average over the study period, 69.9%), with fruits (both mature and young, 21.2%) contributing more in certain months. The higher percentage of folivory was similar to that found in previous studies for this species and other Trachypithecus species. The category-based analyses revealed a significant positive correlation between the percentage of young fruit and their availability, whereas most other relationships were not significant. The percentage of feeding on young leaves showed a significant negative correlation with the percentage of feeding on mature leaves and dietary diversity, whereas the percentage of feeding on mature leaves had a positive correlation with that of young fruits. Species-based analyses showed that the percentage of feeding on three main diet items had a significant positive relationship with their availability. Our results imply that the dietary composition of the lutungs in our study site is determined by vegetation composition, while the seasonal change in diet is characterized by the availability of main food parts (young leaves and young fruits).


Colobines Diet Feeding ecology Indonesia Vegetation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agetsuma, N., Noma, N., 1995. Rapid shifting of foraging pattern by Yakushima macaques (Macaca fuscata yakui) in response to heavy fruiting of Myrica rubra. Int. J. Primatol. 16, 247–260.CrossRefGoogle Scholar
  2. Banack, S.A., 1998. Diet selection and resource use by flying foxes (genus Pteropus). Ecology 79, 1949–1967.CrossRefGoogle Scholar
  3. Beckworth, R.S., Doctoral dissertation 1995. The Ecology and Behaviour of the Javan Black Langur, in Lower Montane Rainforest, West Java. University of Cambridge, Cambridge.Google Scholar
  4. Borries, C., Sommer, V., Srivastava, A., 1991. Dominance, age, and reproductive success in free-ranging female Hanuman langurs (Presbytis entellus). Int. J. Primatol. 12, 231–257.CrossRefGoogle Scholar
  5. Brotoisworo, E., 1991. The lutung (Presbytis cristata) in Pananjung - Pangandaran Nature Reserve. Comp. Primatol. Monogr. 3, 45–148.Google Scholar
  6. Brugiere, D., Gautier, J.P., Moungazi, A., Gautier-Hion, A., 2002. Primate diet and biomass in relation to vegetation composition and fruiting phenology in a rain forest in Gabon. Int. J. Primatol. 23, 999–1024.CrossRefGoogle Scholar
  7. Bulger, J., Hamilton, W.J., 1987. Rank and density correlates of inclusive fitness measures in a natural chacma baboon (Papio ursinus) troop. Int. J. Primatol. 8, 635–650.CrossRefGoogle Scholar
  8. Caton, J.M., 1999. Digestive strategy of the Asian colobine genus Trachypithecus. Primates. 40, 311–325.CrossRefGoogle Scholar
  9. Chapman, C.A., Chapman, L.J., Wrangham, R., Hunt, K., Gebo, D., Gardner, L., 1992. Estimation of fruit abundance of tropical trees. Biotropica 24, 527–531.CrossRefGoogle Scholar
  10. Cheney, D.L., Seyfarth, R.M., Andelman, S.J., Lee, P.C., 1988. Reproductive success in vervet monkeys. In: Clutton-Block, T.H. (Ed.), Reproductive Success. University of Chicago Press, Chicago, pp. 384–402.Google Scholar
  11. Davies, A.G., Bennett, E.L., 1998. Food selection by two Southeast Asian colobine monkeys (Presbytis rubicunda and Presbytis melalophos) in relation to plant chemistry. Biol. J. Linn. Soc. Lond. 34, 33–56.CrossRefGoogle Scholar
  12. de Camargo, N.F., Ribeiro, J.F., de Camargo, A.J.S.A., Vieira, E.M., 2014. Diet of the gracile mouse opossum Gracilinanus agilis (Didelphimorphia: didelphidae) in a neotropical savanna: intraspecific variation and resource selection. Acta Theriol. 59, 183–191.CrossRefGoogle Scholar
  13. Dela, J.D.S., 2012. Western purple-faced langurs (Semnopithecus vetulus nestor) feed on ripe and ripening fruits in human-modified environments in Sri Lanka. Int. J. Primatol. 33, 40–72.CrossRefGoogle Scholar
  14. Djuwantoko, Doctoral dissertation 1991. Habitat Use of Silver Leaf Monkey (Semnopithecus Auratus E. Geoffroy, 1812) in Teak (Tectona Grandis Linnaeus F.) Plantation of Cepu, Central Java, Indonesia. University of the Philippines, Los Banos.Google Scholar
  15. Fashing, P.J., 2011. African colobine monkeys: patterns of between-group interaction. In: Campbell, C.J., Fuentes, A., MacKinnon, K.C., Panger, M., Bearder, S.K. (Eds.), Primates in Perspective. Oxford University Press, Oxford, pp. 201–2224.Google Scholar
  16. Frank, L.G., 1986. Social organization of the spotted hyena Crocuta crocuta. II. Dominance and reproduction. Anim. Behav. 34, 1510–1527.CrossRefGoogle Scholar
  17. Grueter, C.C., Li, D., Ren, B., Wei, F., Xiang, Z., van Schaik, C.P., 2009. Fallback foods of temperate-living primates: a case study on snub-nosed monkeys. Am. J. Phys. Anthropol. 140, 700–715.CrossRefGoogle Scholar
  18. Hanya, G., Bernard, H., 2012. Fallback foods of red leaf monkeys (Presbytis rubicunda) in Danum Valley. Borneo. Int. J. Primatol. 33, 322–337.CrossRefGoogle Scholar
  19. Hemingway, C.A., Bynum, N., 2005. The influence of seasonality on primate diet and ranging. In: Brockman, D.K., van Schaik, C.P. (Eds.), Seasonality in Primates. Cambridge University Press, Cambridge, pp. 57–104.CrossRefGoogle Scholar
  20. Jacobs, J., 1974. Quantitative measurement of food selection: a modification of the forage ratio and Ivlev’s electivity index. Oecologia 14, 413–417.CrossRefGoogle Scholar
  21. Kirkpatrick, R.C., 2011. The Asian colobines: diversity among leaf-eating monkeys. In: Campbell, C.J., Fuentes, A., Mackinnon, K.C., Panger, M., Bearder, S.K. (Eds.), Primates in Perspective. Oxford University Press, Oxford, pp. 186–200.Google Scholar
  22. Kool, K.M., 1993. The diet and feeding behavior of the silver leaf monkey (Trachypithecus auratus sondaicus) in Indonesia. Int. J. Primatol. 14, 667–700.CrossRefGoogle Scholar
  23. Lambert, J.E., 1998. Primate digestion: interactions among anatomy, physiology, and feeding ecology. Evol. Anthropol. 7, 8–20.CrossRefGoogle Scholar
  24. Marshall, A.J., Boyko, C.M., Feilen, K.L., Boyko, R.H., Leighton, M., 2009. Defining fallback foods and assessing their importance in primate ecology and evolution. Am. J. Phys. Anthropol. 140, 603–614.CrossRefGoogle Scholar
  25. Mitani, M., Watanabe, K., Gurmaya, K.J., Megantara, E.N., Purnama, A.R., Syarief, Y.S., 2009. Plant species list from the Pananjung Pangandaran Nature Reserve, west Java, Indonesia, sampled in the El Nino-Southern Oscillation year of 1997. Hum. Nat. 20, 113–120.Google Scholar
  26. Nijman, V., 2014. Distribution and ecology of the most tropical of the high-elevation montane colobines: the ebony langur on java. In: Grow, N.B., Gursky-Doyen, S., Krzton, A. (Eds.), High Altitude Primates, Developments in Primatology: Progress and Prospects. Springer, New York, pp. 115–132.CrossRefGoogle Scholar
  27. Owens, J.R., Honarvar, S., Nessel, M., Hearn, G.W, 2015. From frugivore to folivore: altitudinal variations in the diet and feeding ecology of the Bioko Island drill (Mandrillus leucophaeus poensis). Am. J. Primatol. 77, 1263–1275.CrossRefGoogle Scholar
  28. R Development Core team, 2015. R: a Language and Environment for Statistical Computing (ver. 3.2.3).Google Scholar
  29. Remis, M.J., Dierenfeld, E.S., Mowry, C.B., Carroll, R.W, 2001. Nutritional aspects of western lowland gorilla (Gorilla gorilla gorilla) diet during seasons of fruit scarcity at Bai Hokou, Central African Republic. Int. J. Primatol. 22, 807–836.CrossRefGoogle Scholar
  30. Rosalino, L.M., Loureiro, F., MacDonald, D.W., Santos-Reis, M., 2003. Dietary shifts of the badgers (Meles meles) in Mediterranean woodlands: an opportunistic forager with seasonal specialisms. Mamm. Biol. 70, 12–23.CrossRefGoogle Scholar
  31. Rosleine, D., Suzuki, E., 2012. Secondary succession at abandoned grazing sites, Pangandaran Nature Reserve, West Java. Indonesia Tropics 21, 91–103.CrossRefGoogle Scholar
  32. Sayers, K., 2013. On folivory, competition, and intelligence: generalisms, overgeneralizations, and models of primate evolution. Primates. 54, 111–124.CrossRefGoogle Scholar
  33. Solanki, G.S., Kumar, A., Sharma, B.K., 2008. Feeding ecology of Trachypithecus pileatus in India. Int. J. Primatol. 29, 173–182.CrossRefGoogle Scholar
  34. Sumardja, E.A., Kartawinata, K., 1977. Vegetation analysis of the habitat of banteng (Bos javanicus) at the Pananjung Pangandaran Nature Reserve, West Java. Biotrop. Bull. 18, 1–49.Google Scholar
  35. Tsuji, Y., Hanya, G., Grueter, C.C., 2013a. Feeding strategies of primates in temperate and alpine forests: comparison of Asian macaques and colobines. Primates 54, 201–215.CrossRefGoogle Scholar
  36. Tsuji, Y., Prayitno, B., Nila, S., Widayati, K.A., Suryobroto, B., 2015. Diurnal resting site selection and daytime feeding behaviour of wild Malayan flying lemur Galeopterus variegatus in Western Java. Indonesia Mamm. Study 40, 35–45.CrossRefGoogle Scholar
  37. Tsuji, Y., Takatsuki, S., 2009. Effects of yearly change in nut fruiting on autumn home-range use by Macacafuscata on Kinkazan Island, northern Japan. Int. J. Primatol. 30, 169–181.CrossRefGoogle Scholar
  38. Tsuji, Y., Widayati, K.A., Hadi, I., Suryobroto, B., Watanabe, K., 2013b. Identification of individual adult female Javan lutungs (Trachypithecus auratus sondaicus) by using patterns of dark pigmentation in the pubic area. Primates 54, 27–31.CrossRefGoogle Scholar
  39. Vogt, M., Doctoral dissertation 2003. Freilanduntersuchungen Zurökologie Und Zum Verhalten Von Trachypithecus auratus Kohlbruggei (Haubenlanguren) Im West-bali-National Park, Indonesien. University of Tübingen, Tübingen, Germany.Google Scholar
  40. Workman, C., 2010. Diet of the Delacour’s langur (Trachypithecus delacouri) in van long nature reserve. Vietnam. Am. J. Primatol. 72, 317–324.PubMedGoogle Scholar
  41. Wrangham, R.W., 1981. Drinking competition in vervet monkeys. Anim. Behav. 29, 904–910.CrossRefGoogle Scholar
  42. Zhou, Q., Wei, F., Li, M., Huang, C., Luo, B., 2006. Diet and food choice of Trachypithecus francoisi in the Nonggang Nature Reserve. China. Int. J. Primatol. 27, 1441–1460.CrossRefGoogle Scholar
  43. Zhou, Q., Huang, Z., Wei, X., Wei, F., Huang, C., 2009. Factors influencing interannual and intersite variability in the diet of Trachypithecus francoisi. Int. J. Primatol. 30, 583–599.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2019

Authors and Affiliations

  • Yamato Tsuji
    • 1
    Email author
  • Masazumi Mitani
    • 2
  • Kanthi Arum Widayati
    • 3
  • Bambang Suryobroto
    • 3
  • Kunio Watanabe
    • 1
  1. 1.Primate Research InstituteKyoto UniversityInuyama, AichiJapan
  2. 2.Institute of Natural and Environmental SciencesUniversity of HyogoSanda, HyogoJapan
  3. 3.Department of BiologyBogor Agricultural UniversityBogorIndonesia

Personalised recommendations