Advertisement

Mammalian Biology

, Volume 98, Issue 1, pp 61–72 | Cite as

Plasticity and specialisation in the isotopic niche of African clawless otters foraging in marine and freshwater habitats

  • Rowan K. JordaanEmail author
  • Michael J. Somers
  • Grant Hall
  • Trevor McIntyre
Original investigation

Abstract

Individual-level behavioural plasticity resulting from differences in environmental conditions is prevalent in many organisms and may result in phenomena such as dietary- or habitat specialisation. The isotopic niche of African clawless otters, Aonyx capensis, occupying different habitats was investigated with the use of stable isotope techniques. Stable isotope analyses revealed that African clawless otter isotopic niche varied between, as well as within, individuals and varied when compared to conspecifics occupying different habitats. Some otters varied their isotopic niche and foraging areas temporally, whilst others did not. The isotopic niche of African clawless otters in a coastal habitat overlapped substantially with previous reports on otter diet, but illustrated that otters eat more shark and molluscs than previously estimated. In freshwater habitats, not all otters had trout in their isotopic niche, although this prey item was abundantly available in the study area. Our results suggest that the African clawless otters can exhibit substantial behavioural plasticity. Such evident adaptability is likely to benefit otters and allow for extended use of non-pristine environments affected by human disturbance when sufficient quantities of prey remain available.

Keywords

Behavioural plasticity Diet Isotope analysis Trout Conflict Africa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angerbjörn, A., Hersteinsson, P., Lidén, K., Nelson, E., 1994. Dietary variation inarctic foxes (Alopex lagopus) — an analysis of stable carbon isotopes. Oecologia 99, 226–232.PubMedCrossRefGoogle Scholar
  2. Arden-Clarke, C.H.G., 1986. Population density, home range size and spatial organization of the Cape clawless otter, Aonyx capensis, in a marine habitat. J.Zool. (Lond.) 209, 201–221.CrossRefGoogle Scholar
  3. Badyaev, A.V., 2005. Stress-induced variation in evolution: from behavioural plasticity to genetic assimilation. Proc. R. Soc. Brit. 272, 877–886.CrossRefGoogle Scholar
  4. Bateson, P., Gluckman, P., 2011. Plasticity, Robustness, Development and Evolution. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  5. Bojarska, K., Selva, N., 2012. Spatial patterns in brown bear Ursus arctos diet: the role of geographical and environmental factors. Mamm. Rev. 42 (2), 120–143.CrossRefGoogle Scholar
  6. Bolnick, D.I., Svanback, R., Fordyce, J.A., Yang, L.H., Davis, J.M., Hulsey, C.D., Forister, M.L., 2003. The ecology of individuals: incidence and implications of individual specialization. Am. Nat. 161, 1–28.PubMedCrossRefGoogle Scholar
  7. Bownes, S.J., McQuaid, C.D., 2006. Will the invasive mussel Mytilus galloprovincialis Lamarck replace the indigenous Perna perna L. On the southcoast of South Africa? J. Exp. Mar. Biol. Ecol. 338, 140–151.CrossRefGoogle Scholar
  8. Boyer, B., Grue, C.E., 1995. The need for water quality criteria for frogs. Environ. Health Perspect. 103, 352–357.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Branch, G.M., Steffani, C.N., 2004. Can we predict the effects of alien species? Acase-history of the invasion of South Africa by Mytilus galloprovincialis (Lamarck). J. Exp. Mar. Biol. Ecol. 300, 189–215.CrossRefGoogle Scholar
  10. Brown, A.C., 1996. Behavioural plasticity is a key factor in the survival and evolution of the macrofauna on exposed sandy beaches. Rev. Chil. Hist. Nat. 69, 469–474.Google Scholar
  11. Butler, J.R.A., Du Toit, J.T., 1994. Diet and conservation of Cape clawless otters in eastern Zimbabwe. S. Afr. J. Wildl. Res. 24, 41–47.Google Scholar
  12. Carrasco, T.S., Botta, S., Machado, R., Simões-Lopes, P.C., Carvalho-Junior, O., Ott, P.H., Colares, E.P., Secchi, E.R., 2019. Isotopic niche of the Neotropical otter, Lontra longicaudis (Carnivora, Mustelidae), in different coastal aquatic systems in southern Brazil. Hydrobiologia 835, 83–100.CrossRefGoogle Scholar
  13. Carss, D.N., Parkinson, S.G., 1996. Errors associated with otter Lutra lutra faecalanalysis in assessing general diet from spraints. J. Zool. (Lond.) 238, 301–307.CrossRefGoogle Scholar
  14. Clavero, M., Prenda, J., Delibes, M., 2003. Trophic diversity of the otter (Lutra lutraL.) in temperate and Mediterranean freshwater habitats. J. Biogeogr. 30, 761–769.CrossRefGoogle Scholar
  15. Clementz, M.T., Koch, P.L., 2001. Differentiating aquatic mammal habitat and foraging ecology with stable isotopes in tooth enamel. Oecologia 129, 461–472.CrossRefGoogle Scholar
  16. Coplen, T.B., 1994. Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. Pure Appl. Chem. 66, 273–276.CrossRefGoogle Scholar
  17. Day, C.C., Westover, M.D., McMillan, B.R., 2015. Seasonal diet of the northern river otter (Lontra canadensis): what drives prey selection? Can. J. Zool. 93, 197–205.CrossRefGoogle Scholar
  18. de Vos, M., 2018. Human-predator Conflict in the South African Fly-fishing Industry: Fish Survival Probabilities and Stakeholder Perceptions. Unpublished MSc Dissertation. University of Pretoria, South Africa.Google Scholar
  19. Emmerson, W., Philip, S., 2004. Diets of Cape clawless otters at two South African coastal localities. Afr. Zool. 39, 201–210.CrossRefGoogle Scholar
  20. Englund, J., 1965. Studies on the food ecology of the Red fox (Vulpes vulpes) in Sweden. Viltrevy 3, 377–484.Google Scholar
  21. Estes, J.A., Riedman, M.L., Staedler, M.M., Tinker, M.T., Lyon, B.E., 2003. Individual variation in prey selection by sea otters: patterns, causes and implications. J. Anim. Ecol. 72, 144–155.CrossRefGoogle Scholar
  22. Farquhar, G.D., Ehleringer, J.R., Hubick, K.T., 1989. Carbon isotope discrimination and photosynthesis. In: Briggs, W.R. (Ed.), Annual Review of Plant Physiology and Plant Molecular Biology Vol 40. Annual Reviews. Palo Alto, pp. 503–538.Google Scholar
  23. Ford, J.K.B., Ellis, G.M., Barrett-Lennard, L.G., Morton, A.B., Palm, R.S., Balcomb, K.C., 1998. Dietary specialization in two sympatric populations of killer whales (Orcinus orca) in coastal British Columbia and adjacent waters. Can. J. Zool. 76, 1456–1471.CrossRefGoogle Scholar
  24. Fry, B., Wainright, S.C., 1991. Diatom sources of carbon-13 rich carbon in marine food webs. Mar. Ecol. Prog. Ser. 76, 149–157.CrossRefGoogle Scholar
  25. Ghalambor, C.K., Angeloni, L.M., Carroll, S.P., 2010. Behavior as phenotypic plasticity. In: D.F, Fox, C.W. (Eds.), Westneatv, Evolutionary Behavioral Ecology. Oxford University Press, New York, pp. 90–107.Google Scholar
  26. Glasser, J.W., 1982. A theory of trophic strategies: the evolution of facultative specialists. Am. Nat. 119, 250–262.CrossRefGoogle Scholar
  27. Gorgadze, G., 2013. Seasonal diet of the otter (Lutra lutra) on the Alazani River(Georgia). Hystrix 24, 157–160.Google Scholar
  28. Grey, J., 2001. Ontogeny and dietary specialization in brown trout (Salmo trutta L.) from Loch Ness, Scotland, examined using stable isotopes of carbon and nitrogen. Ecol. Freshw. Fish 10, 168–176.CrossRefGoogle Scholar
  29. Hanekom, N., Southwood, A., Ferguson, M., 1989. A vegetation survey of the Tsitsikamma Coastal National Park. Koedoe 32, 47–67.CrossRefGoogle Scholar
  30. Hemminga, M.A., Mateo, M.A., 1996. Stable carbon isotopes in seagrasses: variability in ratios and use in ecological studies. Mar. Ecol. Prog. Ser. 140, 285–298.CrossRefGoogle Scholar
  31. Hilderbrand, G.V., Farley, S.D., Robbins, C.T., Hanley, T.A., Titus, K., Servheen, C., 1996. Use of stable isotopes to determine diets of living and extinct bears. Can. J. Zool. 74, 2080–2088.CrossRefGoogle Scholar
  32. Hobson, K.A., Welch, H.E., 1992. Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis. Mar. Ecol. Prog. Ser. 84, 9–18.CrossRefGoogle Scholar
  33. Hoffmann, A.A., Parsons, P.A., 1997. Extreme Environmental Change and Evolution. Cambridge University Press.Google Scholar
  34. Hooker, S.K., Iverson, S.J., Ostrom, P., Smith, S.C., 2001. Diet of northern bottlenose whales inferred from fatty-acid and stable isotope analyses of biopsy samples. Can. J. Zool. 79, 1442–1454.CrossRefGoogle Scholar
  35. Iriarte, J.A., Franklin, W.L., Johnson, W.E., Redford, K.H., 1990. Biogeographic variation of food habits and body size of the America puma. Oecologia 85, 185–190.PubMedCrossRefGoogle Scholar
  36. Iverson, S.J., Frost, K.J., Lowry, L.F., 1997. Fatty acid signatures reveal fine scales tructure of foraging distribution of harbor seals and their prey in Prince William Sound. Alaska. Mar. Ecol. Prog. Ser. 151, 255–271.CrossRefGoogle Scholar
  37. Jenkins, D., Walker, J.G.W., McCowan, D., 1979. Analysis of otter (Lurra lutra) faeces from Deeside, N.E. Scotland. J. Zool. (Lond.) 187, 235–244.CrossRefGoogle Scholar
  38. Jonsson, B., Jonsson, N., 2009. A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow. J. Fish Biol. 75, 2381–2447.PubMedCrossRefGoogle Scholar
  39. Jordaan, R.K., McIntyre, T., Somers, M.J., Bester, M.N., 2015. An assessment of spatial and temporal variation in the diet of Cape clawless otters (Aonyx capensis) in marine environments. Afr. J. Wildl. Res. 45, 342–353.CrossRefGoogle Scholar
  40. Klare, U., Kamler, J.F., McDonald, D.W., 2011. A comparison and critique of different scat-analysis methods for determining carnivore diet. Mam. Rev. 41, 294–312.CrossRefGoogle Scholar
  41. KPMG, 1999. Mpumalanga Tourism Growth Plan. Unpublished Report. Nelspruit: Mpumalanga Tourism Authority.Google Scholar
  42. Kruuk, H., Goudswaard, P.C., 1990. Effects of changes in fish populations in Lake Victoria on the food of otters (Lutra maculicollis Schinz and Aonyx capensis Lichtenstein). Afr. J. Ecol. 28, 322–329.CrossRefGoogle Scholar
  43. Lerner, J.E., Ono, K., Hernandez, K.M., Runstadler, J.A., Puryear, W.B., Polito, M.J., 2018. Evaluating the use of stable isotope analysis to infer the feeding ecology of a growing US gray seal (Halichoerus grypus) population. PLoS One 13, e0192241.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Lübcker, N., Condit, R., Beltran, R.S., de Bruyn, P.J.N., Bester, M.N., 2016. Vibrissal growth parameters of southern elephant seals Mirounga leonina: obtaining fine-scale, time-based stable isotope data. Mar. Ecol. Prog. Ser. 559, 243–255.CrossRefGoogle Scholar
  45. Meynier, L., Pusineri, C., Spitz, J., Santos, M.B., Pierce, G.J., Ridoux, V., 2008. Intraspecific dietary variation in the short-beaked common dolphin Delphinus delphis in the Bay of Biscay: importance of fat fish. Mar. Ecol. Prog. Ser. 354, 277–287.CrossRefGoogle Scholar
  46. Minagawa, M., Wada, E., 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between 15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140.CrossRefGoogle Scholar
  47. Moore, J.W., Semmens, B.X., 2008. Incorporating uncertainty and prior information into stable isotope mixing models. Ecol. Lett. 11, 470–480.PubMedCrossRefGoogle Scholar
  48. Newsome, S.D., Tinker, M.T., Monson, D.H., Oftedal, O.T., Ralls, K., Staedler, M.M., Fogel, M.L., Estes, J.A., 2009. Using stable isotopes to investigate individual diet specialization in California sea otters (Enhydra lutris nereis). Ecology 90, 961–974.PubMedCrossRefGoogle Scholar
  49. Newsome, S.D., Bentall, G.B., Tinker, M.T., Oftedal, O.T., Ralls, K., Estes, J.A., Fogel, M.L., 2010. Variation in δ13C and δ15N diet-vibrissae trophic discrimination factors in a wild population of California sea otters. Ecol. Appl. 20, 1744–1752.PubMedCrossRefGoogle Scholar
  50. Norbury, G.L., Sanson, G.D., 1992. Problems with measuring diet selection of terrestrial, mammalian herbivores. Aust. J. Ecol. 17, 1–7.CrossRefGoogle Scholar
  51. Nussey, D.H., Wilson, A.J., Brommer, J.E., 2007. The evolutionary ecology of individual phenotypic plasticity in wild populations. J. Evol. Biol. 20, 831–844.PubMedCrossRefGoogle Scholar
  52. O’Leary, M.H., 1981. Carbon isotope fractionation in plants. Phytochemistry 20, 553–567.CrossRefGoogle Scholar
  53. Parnell, A.C., Inger, R., Bearhop, S., Jackson, A.L., 2010. Source partitioning using stable isotopes: coping with too much variation. PLoS One 5, e9672.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Parnell, A., R package version 0.3 2016. SIMMR: A Stable Isotope Mixing Model.Google Scholar
  55. Phillips, D.L., Gregg, J.W., 2003. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136, 261–269.PubMedCrossRefGoogle Scholar
  56. Piersma, T., Drent, J., 2003. Phenotypic flexibility and the evolution of organismal design. Trends Ecol. Evol. (Amst.) 18, 228–233.CrossRefGoogle Scholar
  57. Ponsonby, D.W., Schwaibold, U., 2018. Country otter, city otter: the distribution patterns of two otter species in an urbanized area of Gauteng, South Africa. Afr. J. Ecol., 1–7.Google Scholar
  58. R Core Team, 2018. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  59. Rheingantz, M.L., Santiago-Plata, V.M., Trinca, C.S., 2017. The Neotropical otter Lontra longicaudis: a comprehensive update on the current knowledge and conservation status of this semiaquatic carnivore. Mamm. Rev. 47, 291–305.CrossRefGoogle Scholar
  60. Reznick, D.N., Endler, J.A., 1982. The impact of predation on life history evolution in Trinidadian guppies (Poecilia reticulata). Evolution 36, 160–177.PubMedGoogle Scholar
  61. Reznick, D., Yang, A.P., 1993. The influence of fluctuating resources on life history: patterns of allocation and plasticity in female guppies. Ecology 74, 2011–2019.CrossRefGoogle Scholar
  62. Rowe-Rowe, D.T., 1977a. Variation in the predatory behaviour of the clawless otter. Lammergeyer 23, 22–27.Google Scholar
  63. Rowe-Rowe, D.T., 1977b. Food ecology of otters in Natal, South Africa. Oikos 28, 210–219.CrossRefGoogle Scholar
  64. Rowe-Rowe, D.T., 1991. Status of otters in Africa. Habitat 6, 15–20.Google Scholar
  65. Rowe-Rowe, D.T., Somers, M.J., 1998. Diet, foraging behaviour and coexistence of African otters and the water mongoose. Symp. Zool. Soc. Lond. 71, 215–227.Google Scholar
  66. Schumann, E.H., Cohen, A.L., Jury, M.R., 1995. Coastal sea surface temperature variability along the south coast of South Africa and the relationship to regional and global climate. J. Mar. Res. 53, 231–248.CrossRefGoogle Scholar
  67. Smith, D.C., van Buskirk, J., 1995. Phenotypic design, plasticity, and ecological performance in two tadpole species. Am. Nat. 145, 211–233.CrossRefGoogle Scholar
  68. Snell-Rood, E.C., 2013. An overview of the evolutionary causes and consequences of behavioural plasticity. Anim. Behav. 85, 1004–1011.CrossRefGoogle Scholar
  69. Somers, M.J., 2000. Seasonal variation in the diet of Cape clawless otters (Aonyxcapensis) in a marine habitat. Afr. Zool. 35, 261–268.CrossRefGoogle Scholar
  70. Somers, M.J., Purves, M.G., 1996. Trophic overlap between three semi-aquatic carnivores: Cape clawless otter, spotted-necked otter and water mongoose. Afr. J. Ecol. 34, 158–166.CrossRefGoogle Scholar
  71. Somers, M.J., Nel, J.A.J., 2003. Diet in relation to prey of Cape clawless otters in two South African rivers. Afr. Zool. 38, 317–326.Google Scholar
  72. Tinker, M.T., Costa, D.P., Estes, J.A., Wieringa, N., 2007. Individual dietary specialization and dive behaviour in the California sea otter: using archivaltime-depth data to detect alternative foraging strategies. Deep Sea Res. Part II Top. Stud. Oceanogr. 54, 330–342.CrossRefGoogle Scholar
  73. Tinker, M.T., Estes, J.A., Bentall, G., 2008. Food limitation leads to behavioral diversification and dietary specialization in sea otters. Proc. Nat. Acad. Sci. USA 105, 560–565.PubMedCrossRefGoogle Scholar
  74. van der Zee, D., 1979. Food and Status of the Cape Clawless Otter, Aonyx capensis Schinz, in the Tsitsikamma Coastal National Park, South Africa. M. SC. Thesis. University of Pretoria, South Africa.Google Scholar
  75. van der Zee, D., 1981. Prey of the Cape clawless otter (Aonyx capensis) in the Tsitsikamma Coastal National Park, South Africa. J. Zool. (Lond.) 194, 467–483.CrossRefGoogle Scholar
  76. Walton, M.J., Henderson, R.J., Pomeroy, P.P., 2000. Use of blubber fatty acid profiles to distinguish dietary differences between grey seals Halichoerus grypus from two UK breeding colonies. Mar. Ecol. Prog. Ser. 193, 201–208.CrossRefGoogle Scholar
  77. West-Eberhard, M.J., 2003. Developmental Plasticity and Evolution. Oxford University Press, New York.Google Scholar
  78. Watson, L.H., Lang, A.J., 2003. Diet of Cape clawless otters in Groenvlei Lake, South Africa. S. Afr. J. Wildl. Res. 33, 135–137.Google Scholar
  79. Zhou, Y.B., Newman, C., Xu, W.T., Buesching, C.D., Zalewski, A., Kaneko, Y., Macdonald, D.W., Xie, Z.Q., 2011. Biogeographical variation in the diet of Holarctic martens (genus Martes, Mammalia: carnivora: mustelidae): adaptive foraging in generalists. J. Biogogr. 38, 137–147.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2019

Authors and Affiliations

  • Rowan K. Jordaan
    • 1
    Email author
  • Michael J. Somers
    • 1
    • 2
  • Grant Hall
    • 1
  • Trevor McIntyre
    • 1
    • 3
  1. 1.Mammal Research Institute, Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
  2. 2.Eugène Marais Chair of Wildlife Management, Centre for Invasion BiologyUniversity of PretoriaPretoriaSouth Africa
  3. 3.Department of Life and Consumer SciencesUniversity of South AfricaSouth Africa

Personalised recommendations