Skip to main content

Advertisement

Log in

Baiting improves wild boar population size estimates by camera trapping

  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

In the last decade, camera trapping has become a widespread technique for wildlife monitoring. Although baits or attractants are commonly used to increase the likelihood of encounter, this practice has been criticised because of the potential biases in the population estimations based on these records obtained by mark-recapture or mark-resight methods, and especially in relative abundance indices (RAI). For two consecutive years, we evaluated the impact of baiting on wild boar (Sus scrofa) population estimates in a protected area of northeast Spain. In particular, we compared the number of boars per independent events (the group size), the estimated population size and RAI between periods with and without baiting. Baiting increased mean group size estimation and the likelihood of an encounter leading to more precise wild boar population estimates. The RAI values both at baited and unbaited campaigns correlated significantly with mark-resight abundance estimates, suggesting that these indices could be used to evaluate the boar population changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acevedo, P., Vicente, J., Höfle, U, Cassinello, J., Ruiz-Fons, F., Gortazar, C., 2006. Estimation of European wild boar relative abundance and aggregation: a novel method in epidemiological risk assessment. Epidemiol. Infect. 135, 519–527, https://doi.org/10.1017/S0950268806007059.

    PubMed  Google Scholar 

  • Apollonio, M., Andersen, R., Putman, R., 2010. European Ungulates and Their Management in the 21st Century. Cambridge University Press, Cambridge, United Kingdom.

    Google Scholar 

  • Ballesteros, C., Carrasco-García, R., Vicente, J., Carrasco, J., Lasagna, A., De La Fuente, J., Gortázar, C., 2009. Selective piglet feeders improve age-related bait specificity and uptake rate in overabundant Eurasian wild boar populations. Wildl. Res. 36, 203–212, https://doi.org/10.1071/WR08127.

    Google Scholar 

  • Bengsen, A., Butler, J., Masters, P., 2011. Estimating and indexing feral cat population abundances using camera traps. Wildl. Res. 38, 732, https://doi.org/10.1071/wr11134.

    Google Scholar 

  • Bowden, D.C., Kufeld, R.C., 1995. Generalized mark-sight population size estimation applied to colorado moose. J. Wildl. Manage. 59, 840–851, https://doi.org/10.2307/3801965.

    Google Scholar 

  • Bowler, D.E., Nilsen, E.B., Bischof, R., O’Hara, R.B., Yu, T.T., Oo, T., Aung, M., Linnell, J.D.C., 2019. Integrating data from different survey types for population monitoring of an endangered species: the case of the Eld’s deer. Sci. Rep. 9, 7766, https://doi.org/10.1038/s41598-019-44075-9.

    PubMed  Google Scholar 

  • Burton, A.C., Neilson, E., Moreira, D., Ladle, A., Steenweg, R., Fisher, J.T., Bayne, E., Boutin, S., 2015. Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 52 (3), 675–685.

    Google Scholar 

  • Calenge, C., Maillard, D., Fournier, P., Fouque, C., 2004. Efficiency of spreading maize in the garrigues to reduce wild boar (Sus scrofa) damage to Mediterranean vineyards. Eur. J. Wildl. Res. 50, 112–120, https://doi.org/10.1007/s10344-004-0047-y.

    Google Scholar 

  • Campbell, T.A., Long, D.B., Lavelle, M.J., Leland, B.R., Blankenship, T.L., VerCauteren, K.C., 2012. Impact of baiting on feral swine behavior in the presence of culling activities. Prev. Vet. Med. 104, 249–257, https://doi.org/10.1016/j.prevetmed.2012.01.001.

    PubMed  Google Scholar 

  • Carbone, C., Christie, S., Conforti, K., Coulson, T., Franklin, N., Ginsberg, J.R., Griffiths, M., Holden, J., Kawanishi, K., Kinnaird, M., Laidlaw, R., Lynam, A., Macdounal, D.W., Martyr, D., McDougal, C, N.t., L., O’Brien, T., Seidensticker, J., Smith, D.J.L., Sunquist, M., Tilson, R., Wan Shahruddin, W.N., 2001. The use of photographic rates to estimate densities of tigers and other cryptic mammals. Anim. Conserv. 4, 75–79, https://doi.org/10.1017/S1367943002002172.

    Google Scholar 

  • Casas-Díaz, E., Closa-Sebastià, F., Peris, A., Miño, À., Torrentó, J., Casanovas, R., Marco, I., Lavín, S., Fernández-Llario, P., Serrano, E., 2013. Recorded dispersal of wild boar (Sus scrofa) in Northeast Spain: implications for disease-monitoring programs. Wildl. Biol. Pract. 9, 19–26, https://doi.org/10.2461/wbp.2013.ibeun.3.

    Google Scholar 

  • Casas-Díaz, E., Peris, A., Serrano, E., Closa-Sebastià, F., Torrentó, J., Miño, À., Casanovas, R., Marco, I., Lavín, S., 2011. Estima de la densidad de una población de jabalí (Sus scrofa) mediante trampeo fotográfico: estudio piloto en Cataluña. Galemys (Spanish J. Mammal.) 23, 99–104.

    Google Scholar 

  • Cherry, M.J., Conner, L.M., Warren, R.J., 2015. Effects of predation risk and group dynamics on white-tailed deer foraging behavior in a longleaf pine savanna. Behav. Ecol. 26, 1091–1099, https://doi.org/10.1093/beheco/arv054.

    Google Scholar 

  • Curtis, P.D., Boldgiv, B., Mattison, P.M., Boulanger, J.R., 2009. Estimating deer abundance in suburban areas with infrared-triggered cameras. Hum.-Wildl. Conflicts 3, 116–128.

    Google Scholar 

  • Cusack, J.J., Dickman, A.J., Rowcliffe, J.M., Carbone, C., Macdonald, D.W., Coulson, T., 2015. Random versus Game Trail-Based Camera Trap Placement Strategy for Monitoring Terrestrial Mammal Communities. PLoS One 10(5), e0126373, https://doi.org/10.1371/journal.pone.0126373, Published 2015 May 7.

    PubMed  PubMed Central  Google Scholar 

  • Dougherty, S.Q., Bowman, J.L., 2012. Estimating sika deer abundance using camera surveys. Popul. Ecol. 54, 357–365, https://doi.org/10.1007/s10144-012-0311-z.

    Google Scholar 

  • du Preez, B.D., Loveridge, A.J., Macdonald, D.W., 2014. To bait or not to bait: a comparison of camera-trapping methods for estimating leopard Panthera pardus density. Biol. Conserv. 176, 153–161, https://doi.org/10.1016/j.biocon.2014.05.021.

    Google Scholar 

  • Edwards, S., Gange, A.C., Wiesel, I., 2016. An oasis in the desert: The potential of water sources as camera trap sites in arid environments for surveying a carnivore guild. J. Arid Environ. 124, 304–309, https://doi.org/10.1016/j.jaridenv.2015.09.009.

    Google Scholar 

  • Foster, R.J., Harmsen, B.J., 2012. A critique of density estimation from camera-trap data. J. Wildl. Manage. 76, 224–236, https://doi.org/10.1002/jwmg.275.

    Google Scholar 

  • Garrote, G., Gil-Sánchez, J.M., McCain, E.B., Lillo, S., Tellerí-a, J.L., Simón, M.A., 2012. The effect of attractant lures in camera trapping: a case study of population estimates forthe Iberian lynx (Lynxpardinus). Eur. J. Wildl. Res. 58, 881–884, https://doi.org/10.1007/s10344-012-0658-7.

    Google Scholar 

  • Geisser, H., Reyer, H.U., 2004. Efficacy of hunting, feeding, and fencing to reduce crop damage by wild boars. J. Wildl. Manage. 68, 939–946, https://doi.org/10.2193/0022-541X(2004)068[0939:EOHFAF]2.0.CO;2.

    Google Scholar 

  • Gerber, B.D., Karpanty, S.M., Kelly, M.J., 2012. Evaluating the potential biases in carnivore capture-recapture studies associated with the use of lure and varying density estimation techniques using photographic-sampling data of the Malagasy civet. Popul. Ecol. 54, 43–54, http://dx.doi.org/10.1007/s10144-011-0276-3.

    Google Scholar 

  • Hebeisen, C., Fattebert, J., Baubet, E., Fischer, C., 2008. Estimating wild boar(Sus scrofa) abundance and density using capture-resights in Canton of Geneva, Switzerland. Eur. J. Wildl. Res., 391–401.

    Google Scholar 

  • Ibàñez, i., Martí, J.J., Burriel Moreno, J.Á., 2010. Mapa de cubiertas del suelo de Cataluña: características de laterceraedicióny relación conSIOSE. In: Ojeda, J., Pita, M.F., Vallejo, I. (Eds.), Tecnologías de La Información Geográfica: La Información Geográfica Al Servicio de Los Ciudadanos. Secretariado de Publicaciones de la Universidad de Sevilla, Sevilla, pp. 179–198.

    Google Scholar 

  • Ivan, J.S., White, G.C., Shenk, T.M., 2013. Using auxiliary telemetry information to estimate animal density from capture-recapture data. Ecology 94, 809–816, https://doi.org/10.1890/12-0101.1.

    Google Scholar 

  • Jackson, C.H., 2011. Multi-state models for panel data: the msm package for R.J. Stat. Softw. 38, 1–28, https://doi.org/10.18637/jss.v038.i08.

    Google Scholar 

  • Jerina, K., Pokorny, B., Stergar, M., 2014. First evidence of long-distance dispersal of adult female wild boar (Sus scrofa) with piglets. Eur. J. Wildl. Res. 60, 367–370, https://doi.org/10.1007/s10344-014-0796-1.

    Google Scholar 

  • Jiménez, J., Rodríguez, C., Moreno, A., 2013. Estima de una población de corzo mediante modelos de captura-recaptura clásicos y espacialmente explícitos. Galemys (Spanish J. Mammal. 25, 1–12.

    Google Scholar 

  • Keever, A.C., McGowan, C.P., Ditchkoff, S.S., Acker, P.K., Grand, J.B., Newbolt, C.H., 2017. Efficacy of N-mixture models for surveying and monitoring white-tailed deer populations. Mammal Res. 62, 413–422, https://doi.org/10.1007/s13364-017-0319-z.

    Google Scholar 

  • Larrucea, E.S., Brussard, P.F., Jaeger, M.M., Barrett, R.H., 2007. Cameras, coyotes, and the assumption of equal detectability. J. Wildl. Manage. 71, 1682–1689, https://doi.org/10.2193/2006-407.

    Google Scholar 

  • Massei, G., Coats, J., Lambert, M.S., Pietravalle, S., Gill, R., Cowan, D., 2018. Camera traps and activity signs to estimate wild boar density and derive abundance indices. Pest Manag. Sci. 74, 853–860, https://doi.org/10.1002/ps.4763.

    CAS  PubMed  Google Scholar 

  • Massei, G., Roy, S., Bunting, R., 2011. Too many hogs? A review of methods to mitigate impact by wild boar and feral hogs. Hum.-Wildl. Interact. 5, 79–99.

    Google Scholar 

  • Matthews, S.M., Golightly, R.T., Higley, J.M., 2008. Mark-resight density estimation for American black bears in Hoopa, California. Ursus 19, 13–21, https://doi.org/10.2192/1537-6176(2008)19[13:MDEFAB]2.0.CO;2.

    Google Scholar 

  • McClintock, B.T., 2016. Mark-resight models. In: Cooch, E.G., White, G.C. (Eds.), Program MARK- A Gentle Introduction., pp. 18.1–18.43.

    Google Scholar 

  • McClintock, B.T., White, G.C., Antolin, M.F., Tripp, D.W., 2009. Estimating abundance using mark-resight when sampling is with replacement or the number of marked individuals is unknown. Biometrics 65, 237–246, https://doi.org/10.1111/j.1541-0420.2008.01047.x.

    PubMed  Google Scholar 

  • McCoy, J.C., Ditchkoff, S.S., Steury, T.D., 2011. Bias associated with baited camera sites for assessing population characteristics of deer. J. Wildl. Manage. 75, 472–477, https://doi.org/10.1002/jwmg.54.

    Google Scholar 

  • Meek, P., Fleming, P., Ballard, G., Banks, P., Claridge, A., Sanderson, J., Swann, D. (Eds.), 2014. Camera Trapping: Wildlife Management and Research. CSIRO Publishing, Melbourne, Victoria.

    Google Scholar 

  • Meng, X.J., Lindsay, D.S., Sriranganathan, N., 2009. Wild boars as sources for infectious diseases in livestock and humans. Philos. Trans. R. Soc. B Biol. Sci. 364, 2697–2707, https://doi.org/10.1098/rstb.2009.0086.

    CAS  Google Scholar 

  • Minuartia, 2016. Programa de seguiment de les poblacions de senglar (Sus scrofa) a Catalunya. Temporada 2015/2016.

    Google Scholar 

  • Nichols, J.D., O’Connell, A.F., Karanth, K.U., 2011. Camera traps in animal ecology and conservation: what’s next? In: O’Connell, A.F., Nichols, J.D., Karanth, K.U. (Eds.), Camera Traps in Animal Ecology. Springer, Japan, Tokyo, pp. 253–263, https://doi.org/10.1007/978-4-431-99495-4_14.

    Google Scholar 

  • O’Brien, T.G., 2011. Abundance, density and relative abundance: a conceptual framework. In: Camera Traps in Animal Ecology: Methods and Analyses. Springer, Japan, Tokyo, pp. 71–96, https://doi.org/10.1007/978-4-431-99495-4_6.

    Google Scholar 

  • O’Brien, T.G., Kinnaird, M.F., Wibisono, H.T., 2003. Crouching tigers, hidden prey: sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. 6, 131–139, https://doi.org/10.1017/S1367943003003172.

    Google Scholar 

  • O’Connell, A.F., Nichols, J.D., Karanth, K.U., 2011. Introduction. In: O’Connel, A.F., Nichols, J.D., Karanth, K.U. (Eds.), Camera Traps in Animal Ecology. Springer, Japan, Tokyo, pp. 1–8, https://doi.org/10.1007/978-4-431-99495-41.

    Google Scholar 

  • Palmer, M.S., Swanson, A., Kosmala, M., Arnold, T., Packer, C., 2018. Evaluating relative abundance indices for terrestrial herbivores from large-scale camera trap surveys. Afr.J. Ecol. 56, 791–803, https://doi.org/10.1111/aje.12566.

    Google Scholar 

  • Parsons, A.W., Simons, T.R., Pollock, K.H., Stoskopf, M.K., Stocking, J.J., O’Connell, A.F., 2015. Camera traps and mark-resight models: the value of ancillary data for evaluating assumptions. J. Wildl. Manage. 79, 1163–1172, https://doi.org/10.1002/jwmg.931.

    Google Scholar 

  • Powell, L.A., 2007. Approximating variance of demographic parameters using the delta method: a reference for avian biologists. Condor 109, 949, https://doi.org/10.1650/0010-5422(2007)109[949:avodpu]2.0.co;2.

    Google Scholar 

  • R Core Team, 2017. R: a Language and Environment for Statistical Computing. Rich, L.N., Kelly, M.J., Sollmann, R., Noss, A.J., Maffei, L., Arispe, R.L., Paviolo, A., De Angelo, C.D., Di Blanco, Y.E., Di Bitetti, M.S., 2014. Comparing capture-recapture, mark-resight, and spatial mark-resight models for estimating puma densities via camera traps. J. Mammal. 95, 382–391, https://doi.org/10.1644/13-mamm-a-126.

    Google Scholar 

  • Rovero, F., Marshall, A.R., 2009. Camera trapping photographic rate as an index of density in forest ungulates. J. Appl. Ecol. 46, 1011–1017, https://doi.org/10.1111/j.1365-2664.2009.01705.x.

    Google Scholar 

  • Rowcliffe, J.M., Carbone, C., 2008. Surveys using camera traps: are we looking to a brighter future? Anim. Conserv. 11 (3), 185–186, https://doi.org/10.1111/j.1469-1795.2008.00180.x.

    Google Scholar 

  • Rowcliffe, J.M., Field, J., Turvey, S.T., Carbone, C., 2008. Estimating animal density using camera traps without the need for individual recognition. J. Appl. Ecol. 45, 1228–1236, https://doi.org/10.1111/j.1365-2664.2008.01473.x.

    Google Scholar 

  • Sollmann, R., 2018. A gentle introduction to camera-trap data analysis. Afr. J. Ecol. 56, 740–749, https://doi.org/10.1111/aje.12557.

    Google Scholar 

  • Sollmann, R., Mohamed, A., Samejima, H., Wilting, A., 2013. Risky business or simple solution - Relative abundance indices from camera-trapping. Biol. Conserv. 159, 405–412, https://doi.org/10.1016/j.biocon.2012.12.025.

    Google Scholar 

  • Soofi, M., Ghoddousi, A., Hamidi, A.K., Ghasemi, B., Egli, L., Voinopol-Sassu, A.J., Kiabi, B.H., Balkenhol, N., Khorozyan, I., Waltert, M., 2017. Precision and reliability of indirect population assessments for the Caspian red deer Cervus elaphus maral. Wildl. Biol. 2017, wlb.00230, https://doi.org/10.2981/wlb.00230.

    Google Scholar 

  • Sparklin, B.D., Mitchell, M.S., Hanson, L.B., Jolley, D.B., Ditchkoff, S.S., 2009. Territoriality of feral pigs in a highly persecuted population on Fort Benning, Georgia. J. Wildl. Manage. 73, 497–502, https://doi.org/10.2193/2007-585.

    Google Scholar 

  • Swann, D.E., Perkins, N., 2014. Camera trapping for animal monitoring andmanagement: a review of applications. In: Meek, P., Flemign, P., Ballard, G., Banks, P., Claridge, A., Sanderson, J., Swann, D. (Eds.), Camera Trapping: Wildlife Management and Research. CSIRO Publishing, Melbourne, Victoria, pp. 3–11.

    Google Scholar 

  • Sweitzer, R.A., Van Vuren, D., Gardner, I.A., Boyce, W.M., Waithman, J.D., 2000. Estimating sizes of wild pig populations in the North and Central coast regions of California. J. Wildl. Manage. 64, 531–543.

    Google Scholar 

  • Villette, P., Krebs, C.J., Jung, T.S., 2017. Evaluating camera traps as an alternative to live trapping for estimating the density of snowshoe hares (Lepus americanus) and red squirrels (Tamiasciurus hudsonicus). Eur. J. Wildl. Res. 63, 7, https://doi.org/10.1007/s10344-016-1064-3.

    Google Scholar 

  • Villette, P., Krebs, C.J., Jung, T.S., Boonstra, R., 2016. Can camera trapping provide accurate estimates of small mammal (Myodes rutilus and Peromyscus maniculatus) density in the boreal forest? J. Mammal. 97, 32–40, https://doi.org/10.1093/jmammal/gyv150.

    Google Scholar 

  • White, G.C., Burnham, K.P., 1999. Program mark: survival estimation from populations of marked animals. Bird Study 46, S120–S139, https://doi.org/10.1080/00063659909477239.

    Google Scholar 

  • Williams, B.L., Holtfreter, R.W., Ditchkoff, S.S., Grand, J.B., 2011. Efficiency of time-lapse intervals and simple baits for camera surveys of wild pigs. J. Wildl. Manage. 75, 655–659, https://doi.org/10.1002/jwmg.75.

    Google Scholar 

  • Yasuda, M., 2004. Monitoring diversity and abundance of mammals with camera traps: a case study on Mount Tsukuba, central Japan. Mammal Study, 37–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Peris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peris, A., Closa-Sebastià, F., Marco, I. et al. Baiting improves wild boar population size estimates by camera trapping. Mamm Biol 98, 28–35 (2019). https://doi.org/10.1016/j.mambio.2019.07.005

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.mambio.2019.07.005

Keywords

Navigation