Mammalian Biology

, Volume 98, Issue 1, pp 11–16 | Cite as

The use of spatially explicit capture-recapture models for estimating Iberian lynx abundance in a newly reintroduced population

  • Pedro SarmentoEmail author
  • Carlos Carrapato
Original investigation


From 2015 till 2018, 33 lynxes were released in southeast Portugal (Guadiana valley) as a result of an Iberian reintroduction project. Since then, at least 45 lynxes were born in the wild during 3 breeding seasons. In 2018, a combination of sign search and camera trapping was applied to estimate lynx abundance in the Guadiana reintroduction area, using spatially explicit capture-recapture (SECR) models with the incorporation of sex-specific parameters. A total effort of 7210 trap-days led to 218 independent lynx captures (except for yearlings), which corresponded to 22 adults or sub-adults in 50 stations (28%). The estimated population size was 22–29 individuals (adults and sub-adults) in the 723 km2 study area, leading to a density of 3.4 lynxes (>1-year-old)/100 km2. Individuals were heterogeneously distributed, since most lynxes occurred in clusters with a few lynxes scattered among them. Use of space was sex-dependent and, as expected, males moved more distances than females. Apart from the estimated 22–29 over 1 year-old lynxes, the study detected the presence of 27 yearlings. The reintroduction project is still at an early stage, since the goal for a baseline population has not yet been reached (15 reproductive females) and it is therefore essential to improve organizational issues to implement a viable long-term system covering all critical areas, namely long-term replicable census for population monitoring.


Camera-traps Capture-recapture Reintroduction Spatial models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Borchers, D.L., Efford, M.G., 2008. Spatially explicit maximum likelihood methods for capture-recapture studies. Biometrics 64, 377–385.CrossRefGoogle Scholar
  2. Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference. A Practical Information-Theoretic Approach. Springer-Verlag, New York.Google Scholar
  3. Diefenbach, D., Hansen, L, Warren, R., Conroy, M., 2006. Spatial organization of a reintroduced population of bobcats. J. Mammal. 87, 394–401.CrossRefGoogle Scholar
  4. Efford, M.G., Fewster, R.M., 2012. Estimating population size by spatially explicit capture-recapture. Oikos 122, 918–928.CrossRefGoogle Scholar
  5. Efford, M.G., 2011. Estimation of population density by spatial explicit capture-recapture analysis of data from area searches. Ecology 92, 2202–2207.CrossRefGoogle Scholar
  6. Ferreras, P., Beltrán, J., Aldama, J., Delibes, M., 1997. Spatial organization and land tenure system of the Iberian lynx (Lynx pardinus). J. Zoo 243, 163–189.CrossRefGoogle Scholar
  7. Foster, R., Harmsen, B., 2012. A critique of density estimation from camera-trap data. J. Wildl. Manag. 76, 224–236.CrossRefGoogle Scholar
  8. Gardner, B., Reppucci, J., Lucherini, M., Royle, J.A., 2010. Spatially explicit inference for open populations: estimating demographic parameters from camera-trap studies. Ecology 91, 3376–3383.CrossRefGoogle Scholar
  9. Garrote, G., Ayala, R., Pererira, P., Robles, F., Guzman, N., Gárcia, F.J., Barroso, J., 2010. Estimation of the Iberian lynx (Lynx pardinus) population in the Don˜ana area, SW Spain, using capture-recapture analysis of camera-trapping data. Eur. J. Wildl. Res. 60, 885–889.CrossRefGoogle Scholar
  10. Gil-Sánchez, J.M., Moral, M., Bueno, J., Rodríguez-Siles, J., Lillo, S., Pérez, J.M., Simón, M.A., 2011. The use of camera trapping for estimating Iberian lynx (Lynx pardinus) home ranges. Eur. J. Wildl. Res. 57, 1203–1211.CrossRefGoogle Scholar
  11. Guzmán, N., Gárcia, F., Garrote, G., Ayala, R., Iglesias, C, 2005. El lince ibérico (Lynx pardinus) en Espan˜a y Portugal. Censo-diagnóstico de sus poblaciones: Dirección General para la Biodiversidad, Madrid.Google Scholar
  12. ICNF, 2014. Reintroduction Project forthe Iberian Lynx inthe Guadiana Valley. Instituto da Conservacão da Natureza e das Florestas, Lisbon, Portugal.Google Scholar
  13. IUCN, 2016. The IUCN Red List of Threatened Species. IUCN, Gland (Accessed 28 October 2018) Scholar
  14. JAA, 2018. Annual Survey of Iberian Lynx Populations. EU Life+ Iberlince report. Junta Autónoma de Andaluzia.Google Scholar
  15. Janecka, J.E., Tewes, M.E., Davis, I., Haines, A.M., Caso, A., Blankenship, T.L., Honeycutt, R.L., 2016. Genetic differences in the response to landscape fragmentation by a habitat generalist, the bobcat, and a habitat specialist, the ocelot. Conserv. Gen., 1–16.Google Scholar
  16. Lucena-Perez, M., Soriano, L., López-Bao, J.V., Marmesat, E., Fernández, L., Palomares, F., Godoy, J., 2017. Reproductive biology and genealogy inthe endangered Iberian lynx: implications for conservation. Mammalian Biology 89, 7–13.CrossRefGoogle Scholar
  17. Magoun, A.J., Long, CD., Schwartz, M.K., Pilgrim, K.L., Lowell, R.E., Valkenbrug, P., 2011. Integrating motion dection cameras and hair snags for wolverine identification. J. Wildl. Manag. 75, 731–739.CrossRefGoogle Scholar
  18. Palomares, F., Delibes, M., Revilla, E., Calzada, J., Fedriani, J.M., 2001. Spatial ecology of Iberian lynx and abundance of European rabbits in south-western Spain. Wildl. Monog. 148, 1–36.Google Scholar
  19. Repucci, J., Gardner, B., Lucherini, M., 2011. Estimating detection and density of the Andean cat inthe high Andes. J. Mammal. 92, 140–147.CrossRefGoogle Scholar
  20. Royle, J.A., Gardner, B., 2011. Hierarchical models for estimating density from trapping arrays. In: OConnel, A.J., Nichols, J.D., Karanth, U. (Eds.), Camera Traps in Animal Ecology. Springer Verlag, Tokyo, Japan, pp. 163–190.CrossRefGoogle Scholar
  21. Royle, J.A., Chandler, R.B., Gazenski, K.D., Graves, T.A., 2013a. Spatial capture-recapture for jointly estimating population density and landscape connectivity. Ecology 94, 287–294.CrossRefGoogle Scholar
  22. Royle, J.A., Chandler, R.B., Sollmann, R., Gardner, B., 2013b. Spatial Capture-recapture. Academic Press.Google Scholar
  23. Royle, J.A., Magoun, A.J., Gardner, B., Valkenburg, P., Lowell, R.E., 2011. Density estimation in a wolverine population using spatial capture-recapture models. J. Wildl. Manag. 75, 604–611.CrossRefGoogle Scholar
  24. Sarmento, P., Carrapato, C., Eira, C., Silva, J., 2017. Spatial organization and social relations in a reintroduced population of Endangered Iberian lynx Lynx pardinus. Oryx, 1–12.Google Scholar
  25. Silver, S.C., Ostro, L.E., Marsh, L.K., Maffei, L., Noss, A.J., Kelly, M.J., Ayala, G., 2004. The use of camera traps for estimating jaguar Panthera onca abundance and density using capture/recapture analysis. Oryx 38, 1–7.CrossRefGoogle Scholar
  26. Simón, M.A., Cadenas, R., Gil-Sánchez, J.M., López-Parra, M., Gárcia, J., Fernández, L., López, G., 2009. Conservation of free-ranging populations of Iberian lynx in Andalusia. In: Vargas, A., Breitenmoser, C., Breitenmoser, U. (Eds.), Iberian Lynx Ex Situ Conservation: An Interdisciplinary Approach: Fundación Biodiversidad, pp. 42–55, Madrid, Spain.Google Scholar
  27. Sollmann, R., Furtado, M.M., Gardner, B., Hofer, H., Jácomo, A.A., Tôrres, N.M., Silveira, L, 2011. Improving density estimates for elusive carnivores. Accounting for sex-specific detection and movements using spatial capture-recapture models for jaguars in central Brazil. Biol. Conserv. 114, 1017–1024.CrossRefGoogle Scholar
  28. Stanley, T.R., Burnham, K.P., 1999. A closure test for time-specific capture-recapture data. Envir. Ecol. Stat. 6, 197–209.CrossRefGoogle Scholar
  29. Vargas, A., Sánchez, I., Martínez, F., Rivas, A., Godoy, J., Roldan, E., Breitenmoser, U., 2009. Interdisciplinary methods in the Iberian lynx conservation breeding programme. In: Vargas, A., Breitenmoser, C., Breitenmoser, U. (Eds.), Iberian Lynx Ex Situ Conservation: an Interdisciplinary Approach. Fundación Biodiversidad., pp. 56–71, Madrid, Spain.Google Scholar
  30. Villafuerte, R., Calvate, C, Gortázar, C, Moreno, S., 1994. First epizootic of rabbit hemorrhagic disease in free living populations of Oryctolagus cuniculus at Don˜ana National Park, Spain. J. Wildl. Dis. 30, 176–179.CrossRefGoogle Scholar
  31. Wilton, C.A., Puckett, E.E., Beringer, J., Gardner, B., Eggert, L.S., Belant, J.L., 2014. Trap array configuration influences estimates and precision of Black Bear density and abundance. PLoS One, 9.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2019

Authors and Affiliations

  1. 1.Instituto da Conservacão da Natureza e das FlorestasCentro Polivalente de Divulgacão da Casa do LanternimMértolaPortugal
  2. 2.BiologyUniversidade de Aveiro Centro de Estudos do Ambiente e do MarAveiroPortugal

Personalised recommendations