Advertisement

Mammalian Biology

, Volume 98, Issue 1, pp 36–42 | Cite as

Schultz’s rule in domesticated mammals

  • Madeleine GeigerEmail author
  • Robert J. Asher
Short communication

Abstract

Schultz’s rule predicts early eruption of replacement teeth (incisors, canines, and premolars) relative to molars as growth slows and life history events take place over a greater span of time. Here, we investigate if the opposite trend might occur during the domestication process as a consequence of an accelerated life-history and driven by increased energetic needs. We provide new data on tooth eruption in four mammalian species and their domesticated forms: wolf and dog, polecat and ferret, bezoar and goat, wild boar and pig. Our results show some variation in eruption sequences between wild and domestic forms, but none that is consistent and reliably distinct from intraspecific variation. There may be variation in the absolute timing of dental eruption, but despite well documented changes across life history variables, which distinguish wild from domestic forms, eruption sequences remained constant in each wild and domestic version of the species we examined. A conserved eruption sequence is in accordance with many earlier studies, which found no evidence for Schultz’s rule in some wild clades of mammals. Phylogenetic conservation and functional factors likely play an important role in constraining patterns of growth and tooth eruption in these mammals. Furthermore, we suggest that the domestication processes started too recently for fundamental changes of tooth eruption sequences to occur.

Keywords

Tooth eruption Sequence Domestication Life history Heterochrony 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asher, R.J., Gunnell, G.F., Seiffert, E.R., Pattinson, D., Tabuce, R., Hautier, L., Sallam, H.M., 2017. Dental eruption and growth in Hyracoidea (Mammalia, Afrotheria). J. Vertebr. Paleontol. 37, e1317638.CrossRefGoogle Scholar
  2. Axelsson, E., Ratnakumar, A., Arendt, M.-L., Maqbool, K., Webster, M.T., Perloski, M., Liberg, O., Arnemo, J.M., Hedhammar, Å., Lindblad-Toh, K., 2013. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Natur. 495, 360.CrossRefGoogle Scholar
  3. Blandford, P., 1987. Biology of the polecat Mustela putorius: a literature review. Mammal Rev. 17, 155–198.CrossRefGoogle Scholar
  4. Böhmer, C., Heissig, K., Rössner, G.E., 2016. Dental eruption series and replacement pattern in Miocene Prosantorhinus (Rhinocerotidae) as revealed by macroscopy and X-ray: implications for ontogeny and mortality profile. J. Mamm. Evol. 23, 265–279.CrossRefGoogle Scholar
  5. Botigué, L.R., Song, S., Scheu, A., Gopalan, S., Pendleton, A.L., Oetjens, M., Taravella, A.M., Seregély, T., Zeeb-Lanz, A., Arbogast, R.-M., 2017. Ancient European dog genomes reveal continuity since the Early Neolithic. Nat. Commun. 8, 16082.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bover, P., Alcover, J.A., 1999. The evolution and ontogeny of the dentition of Myotragus balearicus Bate, 1909 (Artiodactyla, Caprinae): evidence from new fossil data. Biol. J. Linn. Soc. Lond. 68, 401–428.CrossRefGoogle Scholar
  7. Brown, W., Chapman, N.G., 1991a. Age assessment of fallow deer (Dama dama): from a scoring scheme based on radiographs of developing permanent molariform teeth. J. Zool. 224, 367–379.CrossRefGoogle Scholar
  8. Brown, W., Chapman, N.G., 1991b. Age assessment of red deer(Cervus elaphus): from a scoring scheme based on radiographs of developing permanent molariform teeth. J. Zool. 225, 85–97.CrossRefGoogle Scholar
  9. Byrd, K.E., 1981. Sequences of dental ontogeny and callitrichid taxonomy. Primate. 22, 103–118.CrossRefGoogle Scholar
  10. Domingo, M.S., Cantero, E., García-Real, I., Sancho, M.J.C., Perea, D.M.M., Alberdi, M.T., Morales, J., 2018. First radiological study of a complete dental ontogeny sequence of an extinct equid: implications for equidae life history and taphonomy. Sci. Rep. 8, 8507.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Flatt, T., 2005. The evolutionary genetics of canalization. Q. Rev. Biol. 80, 287–316.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Forasiepi, A.M., Sánchez-Villagra, M.R., 2014. Heterochrony, dental ontogenetic diversity, and the circumvention of constraints in marsupial mammals and extinct relatives. Paleobiolog. 40, 222–237.CrossRefGoogle Scholar
  13. Frantz, L.A., Mullin, V.E., Pionnier-Capitan, M., Lebrasseur, O., Ollivier, M., Perri, A., Linderholm, A., Mattiangeli, V., Teasdale, M.D., Dimopoulos, E.A., 2016. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Scienc. 352, 1228–1231.CrossRefGoogle Scholar
  14. Geiger, M., Gendron, K., Willmitzer, F., Sanchez-Villagra, M.R., 2016. Unaltered sequence of dental, skeletal, and sexual maturity in domestic dogs compared to the wolf. Zool. Lett. 2, 16.CrossRefGoogle Scholar
  15. Geiger, M., Marron, S., West, A.R., Asher, R.J., 2018. Influences of domestication and island evolution on dental growth in sheep. J. Mamm. Evol., 1–16.Google Scholar
  16. Geiger, M., Sanchez-Villagra, M.R., 2018. Similar rates of morphological evolution in domesticated and wild pigs and dogs. Front. Zool. 15, 23.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Gentry, A., Clutton-Brock, J., Groves, C.P., 2004. The naming of wild animal species and their domestic derivatives. J. Archaeol. Sci. 31, 645–651.CrossRefGoogle Scholar
  18. Godfrey, L.R., Samonds, K.E., Wright, P.C., King, S.J., 2005. Schultz’s unruly rule: dental developmental sequences and schedules in small-bodied, folivorous lemurs. Folia Primatol. 76, 77–99.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Gomes Rodrigues, H., Lefebvre, R., Fernandez-Monescillo, M., Mamani Quispe, B., Billet, G., 2017. Ontogenetic variations and structural adjustments in mammals evolving prolonged to continuous dental growth. R. Soc. Open Sci. 4, 170494.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Guthrie, E.H., Frost, S.R., 2011. Pattern and pace of dental eruption in Tarsius. Am. J. Phys. Anthropol. 145, 446–451.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Habermehl, K.-H., 1975. Die Altersbestimmung bei Haus-und Labortieren. Paul Parey, Berlin.Google Scholar
  22. Hammer, Ø., Harper, D.A., Ryan, P.D., 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electronic. 4, 9.Google Scholar
  23. Hellmund, M., 2013. Odontological and osteological investigations on propalaeotheriids (Mammalia, Equidae) from the Eocene Geiseltal Fossillagerstätte (Central Germany) - afull range of extraordinary phenomena. Neues Jahrb Geol Palaeontol Ab. 267, 127–154.CrossRefGoogle Scholar
  24. Hellmund, M., 2016. Tooth emergence and replacement in the European Hyrachyus minimus (Fischer, 1829) (Mammalia, Perissodactyla) from the Geiseltal Fossillagerstätte - a furtherexample for’ Schultz’s rule’ in ungulates. Neues Jahrb Geol Palaeontol Ab. 282, 157–180.CrossRefGoogle Scholar
  25. Henderson, E., 2007. Platyrrhine dental eruption sequences. Am. J. Phys. Anthropol. 134, 226–239.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Herre, W., Röhrs, M., 2013. Haustiere - Zoologisch gesehen. Springer, Berlin, Heidelberg.Google Scholar
  27. Hillson, S., 2005. Teeth. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  28. Holliday, J.A., Steppan, S.J., 2004. Evolution of hypercarnivory: the effect of specialization on morphological and taxonomic diversity. Paleobiolog. 30, 108–128.CrossRefGoogle Scholar
  29. Hulme-Beaman, A., Dobney, K., Cucchi, T., Searle, J.B., 2016. An ecological and evolutionary framework for commensalism in anthropogenic environments. Trends Ecol. Evol. (Amst.) 31, 633–645.CrossRefGoogle Scholar
  30. Janis, C.M., Fortelius, M., 1988. On the means whereby mammals achieve increased functional durability of their dentitions, with special reference to limiting factors. Biol. Rev. 63, 197–230.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Jogahara, Y.O., Natori, M., 2012. Dental eruption sequence and eruption times in Erythrocebus patas. Primat. 53, 193–204.CrossRefGoogle Scholar
  32. Johnston, S.D., Root Kustritz, M.V., Olson, P.S., 2001. Canine and Feline Theriogenology. Saunders.Google Scholar
  33. Jordana, X., Marm-Moratalla, N., Moncunill-Solé, B., Bover, P., Alcover, J.A., Köhler, M., 2013. First fossil evidence for the advance of replacement teeth coupled with life history evolution along an anagenetic mammalian lineage. PLoS On. 8, e70743.CrossRefGoogle Scholar
  34. King, S.J., Godfrey, L.R., Simons, E.L., 2001. Adaptive and phylogenetic significance of ontogenetic sequences in Archaeolemur, subfossil lemur from Madagascar. J. Hum. Evol. 41, 545–576.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Köhler, M., Moyà-Solà, S., 2004. Reduction of brain and sense organs in the fossil insularbovid Myotragus. Brain Behav. Evol. 63, 125–140.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Köhler, M., Moyà-Solà, S., 2009. Physiological and life history strategies of a fossil large mammal in a resource-limited environment. Proc. Natl. Acad. Sci. U. S. A. Biol. Sci. 106, 20354–20358.CrossRefGoogle Scholar
  37. Larson, G., Bradley, D.G., 2014. How much is that in dog years? The advent of canine populationgenomics. PLoS Genet. 10, e1004093.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Limaye, A., 2012. Drishti: a volume exploration and presentation tool. In: Proceedings of SPlE., pp. 85060X.Google Scholar
  39. Lord, K., Feinstein, M., Smith, B., Coppinger, R., 2013. Variation in reproductive traits of members of the genus Canis with special attention to the domestic dog (Canis familiaris). Behav. Processe. 92, 131–142.CrossRefGoogle Scholar
  40. Marín-Moratalla, N., Jordana, X., García-Martínez, R., Köhler, M., 2011. Tracingthe evolution of fitness components in fossil bovids underdifferent selective regimes. C. R. Palevol. 10, 469–478.CrossRefGoogle Scholar
  41. Martin, G.M., 2005. Intraspecific variation in Lestodelphys halli (Marsupialia: Didelphimorphia). J. Mammal. 86, 793–802.CrossRefGoogle Scholar
  42. Mason, I.L., 1984. Evolution of Domesticated Animals. Longman, London, New York.Google Scholar
  43. McGee, E.M., Turnbull, W.D., 2010. A paleopopulation of Coryphodon lobatus (Mammalia: Pantodonta) from DeardorffHill Coryphodon quarry, Piceance Creek basin. Colorado. Fieldiana Geol., 1–12.Google Scholar
  44. Miller, E.R., Gunnell, G.F., Seiffert, E.R., Sallam, H., Schwartz, G.T., 2018. Patterns of dental emergence in early anthropoid primates from the Fayum Depression, Egypt. Hist. Biol. 30, 157–165.CrossRefGoogle Scholar
  45. Monson, T.A., Hlusko, L.J., 2018a. Breaking the rules: phylogeny, not life history, explains dental eruption sequence in primates. Am. J. Phys. Anthropol. 167, 217–233.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Monson, T.A., Hlusko, L.J., 2018b. The evolution of dental eruption sequence in artiodactyls. J. Mamm. Evol. 25, 15–26.CrossRefGoogle Scholar
  47. Purugganan, M.D., Fuller, D.Q., 2011. Archaeological data reveal slow rates of evolution during plant domestication. Evolutio. 65, 171–183.CrossRefGoogle Scholar
  48. Rodrigues, H.G., Herrel, A., Billet, G., 2017. Ontogenetic and life history trait changes associated with convergent ecological specializations in extinct ungulate mammals. Proc. Natl. Acad. Sci. U. S. A. Biol. Sci. 114, 1069–1074.CrossRefGoogle Scholar
  49. Sallam, H.M., Sileem, A.H., Miller, E.R., Gunnell, G.F., 2016. Deciduous dentition and dental eruption sequence of Bothriogenys fraasi (Anthracotheriidae, Artiodactyla) from the Fayum Depression, Egypt. Palaeontol. Electronic. 19, 1–17.Google Scholar
  50. Schultz, A.H., 1956. Postembryonic age changes. In: Hofer, H., Schultz, A.H., Starck, D. (Eds.), Primatologia. Karger, Basel, pp. 887–964.Google Scholar
  51. Schultz, A.H., 1960. Age changes in primates and their modification in man. In: Tanner, J.M. (Ed.), Human Growth. Pergamon Press, Oxford, pp. 1–20.Google Scholar
  52. Schwartz, G.T., Mahoney, P., Godfrey, L.R., Cuozzo, F.P., Jungers, W.L., Randria, G.F.N., 2005. Dental development in Megaladapis edwardsi (Primates, Lemuriformes): implications for understanding life history variation in subfossil lemurs. J. Hum. Evol. 49, 702–721.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Schwartz, J.H., 1974. Dental Development and Eruption in the Prosimians and lts Bearing on Their Evolution. Columbia University, New York.Google Scholar
  54. Shigehara, N., 1980. Epiphyseal union, tooth eruption, and sexual maturation in the commontree shrew, with reference to its systematic problem. Primate. 21, 1–19.CrossRefGoogle Scholar
  55. Slaughter, B.H., Pine, R.H., Pine, N.E., 1974. Eruption of cheekteeth in Insectivora and Carnivora. J. Mammal. 55, 115–125.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Smith, B.H., 1992. Life history and the evolution of human maturation. Evol. Anthropol. 1, 134–142.CrossRefGoogle Scholar
  57. Smith, B.H., 2000. Schultz’s rule’ and the evolution of tooth emergence and replacement patterns in primates and ungulates. In: Teaford, M.F., Smith, M.M., Ferguson, M.W.J. (Eds.), Development, Function and Evolution of Teeth. Cambridge University Press, Cambridge, pp. 212–227.CrossRefGoogle Scholar
  58. Tattersall, I., Schwartz, J.H., 1974. Craniodental morphology and the systematics of the Malagasy lemurs (Primates, Prosimii). Anthropol. Pap. Am. Mus. Nat. Hist. 52, 139–192.Google Scholar
  59. Tchernov, E., Horwitz, L.K., 1991. Body size diminution under domestication: unconscious selection in primeval domesticates. J. Anthropol. Archaeol. 10, 54–75.CrossRefGoogle Scholar
  60. Van Nievelt, A.F., Smith, K.K., 2005. Tooth eruption in Monodelphis domestica and its significance for phylogeny and natural history. J. Mammal. 86, 333–341.CrossRefGoogle Scholar
  61. Veitschegger, K., Kolb, C., Amson, E., Sánchez-Villagra, M.R., 2019. Longevity and life history of cave bears - a review and novel data from tooth cementum and relative emergence of permanent dentition. Hist. Biol. 31, 510–516.CrossRefGoogle Scholar
  62. Veitschegger, K., Sánchez-Villagra, M.R., 2016. Tooth eruption sequences in cervids and the effect of morphology, life history, and phylogeny. J. Mamm. Evol. 23, 251–263.CrossRefGoogle Scholar
  63. Ziegler, A.C., 1971. Atheory of the evolution of therian dental formulas and replacement patterns. Q. Rev. Biol. 46, 226–249.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2019

Authors and Affiliations

  1. 1.Department of ZoologyUniversity of CambridgeCambridgeUK

Personalised recommendations