Advertisement

Mammalian Biology

, Volume 98, Issue 1, pp 52–60 | Cite as

Genetic structure of populations of the Pampean grassland mouse, Akodon azarae, in an agroecosystem under intensive management

  • Noelia Soledad VeraEmail author
  • Marina Beatriz Chiappero
  • José Waldemar Priotto
  • Lucía Valeria Sommaro
  • Andrea Rosa Steinmann
  • Cristina Noemí Gardenal
Article

Abstract

Agroecosystems in central Argentina are a good example of landscape modification by human activities. We used the Pampean grassland mouse (Akodon azarae) as a biological model to assess the effects of landscape fragmentation on the genetic structure of natural populations present in the region. The species is a habitat specialist that is numerically dominant in relatively stable environments, such as remnant areas of native vegetation, stream borders, roadsides and railway banks. We used seven microsatellite loci to analyze the genetic population structure and to explore if there is sex-biased dispersal during the reproductive season at a fine geographical scale. Rodents were captured seasonally in trap lines located on roadsides in an agroecosystem of central Argentina. Values of genetic differentiation among populations and temporal patterns of spatial autocorrelation revealed that the genetic populations occupy areas larger than the sampling area. Causal modeling analyses showed that unfavorable habitats (secondary roads and crop fields) were not barriers to dispersal of Akodon azarae. The high levels of gene flow and the short duration of the low population density phase, followed by a fast recovery, would contribute to the maintenance of highly polymorphic populations. As expected for A. azarae’s mating system, males were not genetically structured. However, females’ spatial genetic structure varied greatly over the year, which would be related to availability and quality of habitat, and to intrasex interactions. Our work contributes to the understanding of dispersal strategies in small mammals in anthropogenically fragmented habitats like intensively managed agroecosystems.

Keywords

Akodon azarae Spatial genetic autocorrelation Microsatellite loci Agroecosystem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberto, F., 2009. MsatAllele-1.0: an R package to visualize the binning of microsatellite alleles. J. Hered. 100, 394–397,  https://doi.org/10.1093/jhered/esn110.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Andreo, V., Provensal, C., Scavuzzo, M., Lamfri, M., Polop, J., 2009. Environmental factors and population fluctuations of Akodon azarae (Muridae: Sigmodontinae) in central Argentina. Austral Ecol. 34, 132–142,  https://doi.org/10.1111/j.1442-9993.2008.01889.x.CrossRefGoogle Scholar
  3. Ávila, B., Bonatto, F., Priotto, J., Steinmann, A.R., 2016. Effects of high density on spacing behaviour and reproduction in Akodon azarae: a fencing experiment. ActaOecol. 70, 67–73,  https://doi.org/10.1016/j.actao.2015.12.001.Google Scholar
  4. Balzarini, M.G., González, L., Tablada, M., Casanoves, F., Di Rienzo, J.A., Robledo, C.W., 2008. Infostat. Manual del Usuario, Editorial Brujas, Córdoba, Argentina., pp. 330–336.Google Scholar
  5. Banks, S.C., Finlayson, G.R., Lawson, S.J., Lindenmayer, D.B., Paetkau, D., Ward, S.J., Taylor, A.C., 2005. The effects of habitat fragmentation due to forestry plantation establishment on the demography and genetic variation of a marsupial carnivore, Antechinus agilis. Biol. Conserv. 122, 581–597,  https://doi.org/10.1016/j.biocon.2004.09.013.CrossRefGoogle Scholar
  6. Bilenca, D.N., Kravetz, F.O., 1998. Seasonal variations in microhabitat use and feeding habits of the pampas mouse Akodon azarae in agroecosystem of central Argentina. Acta Theriol. 43, 195–203,  https://doi.org/10.4098/AT.arch.98-15.CrossRefGoogle Scholar
  7. Bilenca, D.N., González-Fischer, C.M., Teta, P., Zamero, M., 2007. Agricultural intensification and small mammal assemblages in agroecosystems of the Rolling Pampas, central Argentina. Agricult. Ecosyst. Environ. 121, 371–375,  https://doi.org/10.1016/j.agee.2006.11.014.CrossRefGoogle Scholar
  8. Bilenca, D.N., Kravetz, P.O., Zuleta, G.A., 1992. Food habits of Akodon azarae and Calomys laucha (Cricetidae, Rodentia) in agroecosystems of central Argentina. Mammalia 56, 371–384,  https://doi.org/10.1515/mamm.1992.56.3371.CrossRefGoogle Scholar
  9. Bonatto, F., Coda, J., Gomez, D., Priotto, J., Steinmann, A., 2013. Inter-male aggression with regard to polygynous mating system in Pampean grassland mouse, Akodon azarae (Cricetidae: Sigmodontinae). J. Ethol. 31, 223–231,  https://doi.org/10.1007/s10164-013-0370-4.CrossRefGoogle Scholar
  10. Bonatto, F., Gomez, D., Steinmann, A., Priotto, J., 2012. Mating strategies of Pampean mouse males. Anim. Biol. 62, 381–396,  https://doi.org/10.1163/157075612X634102.CrossRefGoogle Scholar
  11. Bonatto, F., Priotto, J., Coda, J., Steinmann, A.R., 2017. Female intrasexual territoriality and its potential adaptive significance: the pampean grassland mouse as an ecological model species. Ethology 123, 230–241,  https://doi.org/10.1111/eth.12592.CrossRefGoogle Scholar
  12. Bonaventura, S.M., Kravetz, F., 1989. Relación roedorvegetación: Importanciade la disponibilidad de cobertura verde para Akodon azarae durante el invierno. Physis (Buenos Aires), Secc. C 47, 1–5.Google Scholar
  13. Bonnet, E., Van de Peer, Y., 2002. zt: a software tool for simple and partial mantel tests. J. Stat. Softw. 7, 1–12,  https://doi.org/10.18637/jss.v007.i10.CrossRefGoogle Scholar
  14. Busch, M., Kravetz, F.O., 1992. Competitive interactions among rodents (Akodon azarae, Calomys laucha, C musculinus and Oligoryzomys flavescens) in a two-habitat systems. I. Spacial and numerical relationships. Mammali 56, 45–56.Google Scholar
  15. Busch, M., Alvarez, M.R., Cittadino, E.A., Kravetz, F.O., 1997. Habitat selection and interspecific competition in rodents in Pampean agroecosystems. Mammalia 61, 167–184,  https://doi.org/10.1515/mamm.1997.61.2.167.CrossRefGoogle Scholar
  16. Busch, M., Bilenca, D.N., Cittadino, E.A., Cueto, G.R., 2005. Effect of removing a dominant competitor, Akodon azarae (Rodentia, Sigmodontinae) on community and population parameters of small rodent species in Central Argentina. Austral Ecol. 30, 168–178,  https://doi.org/10.1111/j.1442-9993.2004.01434.CrossRefGoogle Scholar
  17. Busch, M., Mino, M.H., Dadon, J.R., Hodara, K., 2001. Habitat selection by Akodon azarae and Calomys laucha (Rodentia, Muridae) in pampean agroecosystems. Mammalia 65, 29–48,  https://doi.org/10.1515/mamm.2001.65.1.29.CrossRefGoogle Scholar
  18. Cabrera, A., 1953. Esquema fitogeográfico de la República Argentina. Rev. Mus. La Plata. Bot. 8, 87–168.Google Scholar
  19. Cavia, R., Gómez Villafañe, I.E., Cittadino, E.A., Bilenca, D.N., Mino, M.H., Busch, M., 2005. Effects of cereal harvest on abundance and spatial distribution of the rodent Akodon azarae in central Argentina. Agric. Ecosyst. Environ. 107, 95–99,  https://doi.org/10.1016/j.agee.2004.09.011.CrossRefGoogle Scholar
  20. Centeno-Cuadros, A., Román, J., Delibes, M., Godoy, J.A., 2011. Prisoners in their habitat? Generalist dispersal by habitat specialists: a case study in Southern water vole (Arvicola sapidus). PLoS One 6, e24613,  https://doi.org/10.1371/journal.pone.0024613.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chiappero, M.B., Sommaro, L.V., Priotto, J.W., Wiernes, M.P., Steinmann, A.R., Gardenal, C.N., 2016. Spatio-temporal genetic structure of the rodent Calomys venustus in linear, fragmented habitats. J. Mammal. 97, 424–435,  https://doi.org/10.1093/jmammal/gyv186.CrossRefGoogle Scholar
  22. Cittadino, E.A., De Carli, P., Busch, M., Kravetz, F.O., 1994. Effects of food supplementation on rodents in winter. J. Mammal. 75, 446–453,  https://doi.org/10.2307/1382566.CrossRefGoogle Scholar
  23. Clark, B.K., Clark, B.S., Johnson, L.A., Haynie, M.T., 2001. Influence of roads on movements of small mammals. Southwest. Nat. 46, 338,  https://doi.org/10.2307/3672430.CrossRefGoogle Scholar
  24. Coda, J., Gomez, D., Steinmann, A.R., Priotto, J., 2015. Small mammals in farmlands of Argentina: responses to organic and conventional farming. Agric. Ecosyst. Environ. 211, 17–23,  https://doi.org/10.1016/j.agee.2015.05.007.CrossRefGoogle Scholar
  25. Coulon, A., Cosson, J.F., Angibault, J.M., Cargnelutti, B., Galan, M., Morellet, N., Petit, E., Aulagnier, S., Hewison, A.J.M., 2004. Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach. Mol. Ecol. 13 (9), 2841–2850,  https://doi.org/10.1111/j.1365-294X.2004.02253.x.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Cushman, S.A., Landguth, E.L., 2010. Spurious correlations and inference in landscape genetics. Mol. Ecol. 19(17), 3592–3602,  https://doi.org/10.1111/j.1365-294X.2010.04656.x.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Cushman, S.A., McKelvey, K.S., Hayden, J., Schwartz, M.K., 2006. Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am. Nat. 168 (4), 486–499,  https://doi.org/10.1086/506976.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Dalby, P., 1975. Biology of pampa rodents. Balcarce area, Argentina. Publ. Mus. Mich. State Univ. Biol. Ser. 5, 149–272.Google Scholar
  29. de Villafañe, G., 1981. Reproduccióny crecimiento de Akodon azarae azarae (Fischer, 1829). Historia Natural (Argentina) 1, 193–204.Google Scholar
  30. Didham, R.K., 2010. The ecological consequences of habitat fragmentation. In: Encyclopedia of Life Sciences. John Wiley & Sons, Ltd, Chichester.Google Scholar
  31. Doerr, E.D., Doerr, V.A., Davies, M.J., McGinness, H.M., 2014. Does structural connectivity facilitate movement of native species in Australia’s fragmented landscapes? A systematic review protocol. Environ. Evid. 3, 1–8,  https://doi.org/10.1186/2047-2382-3-9.CrossRefGoogle Scholar
  32. Estes-Zumpf, W.A., Rachlow, J.L., Waits, L.P., Warheit, K.I., 2010. Dispersal, gene flow, and population genetic structure in the pygmy rabbit (Brachylagus idahoensis). J. Mammal. 91, 208–219,  https://doi.org/10.1644/09-mamm-a-032r.1.CrossRefGoogle Scholar
  33. Frankham, R., Briscoe, D.A., Ballou, J.D., 2002. Introduction to Conservation Genetics. Cambridge university press.CrossRefGoogle Scholar
  34. Frantz, A.C., Hamann, J.L., Klein, F., 2008. Fine-scale genetic structure of red deer (Cervus elaphus) in a French temperate forest. Eur. J. Wildl. Res. 54, 44–52,  https://doi.org/10.1007/s10344-007-0107-1.CrossRefGoogle Scholar
  35. Ghersa, C.M., de la Fuente, E., Suarez, S., Leon, R.J.C., 2002. Woody species invasion in the Rolling Pampa. Agric. Ecosyst. Environ. 88, 271–278.CrossRefGoogle Scholar
  36. Gomez, D., Sommaro, L., Steinmann, A., Chiappero, M., Priotto, J., 2011. Movement distances of two species of sympatric rodents in linear habitats of Central Argentine agroecosystems. Mamm. Biol. 76, 58–63,  https://doi.org/10.1016/j.mambio.2010.02.001.CrossRefGoogle Scholar
  37. Gomez, M.D., Coda, J., Simone, I., Martínez, J., Bonatto, F., Steinmann, A.R., Priotto, J., 2015. Agricultural land-use intensity and its effects on small mammals in the central region of Argentina. Mammal Res. 60, 415–423,  https://doi.org/10.1007/s13364-015-0245-x.CrossRefGoogle Scholar
  38. González-Ittig, R.E., Polop, F.J., Andreo, V.C, Chiappero, M.B., Levis, S., Calderón, G., Provensal, M.C, Polop, J.J., Gardenal, C.N., 2015. Temporal fine-scale genetic variation in the zoonosis-carrying long-tailed pygmy rice rat in Patagonia, Argentina. J. Zool. 296, 216–224,  https://doi.org/10.1111/jzo.12238.CrossRefGoogle Scholar
  39. Goudet, J., 2001. FSTAT, A Program to Estimate and Test Gene Diversities and Fixation Indices, Version 2.9.3. https://doi.org/www2.unil.ch/popgen/softwares/fstat.htm.Google Scholar
  40. Kierepka, E.M., Anderson, S.J., Swihart, R.K., Rhodes, O.E., 2016. Evaluating the influence of life-history characteristics on genetic structure: a comparison of small mammals inhabiting complex agricultural landscapes. Ecol. Evol. 6, 6376–6396,  https://doi.org/10.1002/ece3.2269.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Lancaster, M.L., Taylor, A.C., Cooper, S.J.B., Carthew, S.M., 2011. Limited ecological connectivity of an arboreal marsupial across a forest/plantation landscape despite apparent resilience to fragmentation. Mol. Ecol. 20, 2258–2271,  https://doi.org/10.1111/j.1365-294X.2011.05072.x.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Maniatis, T., Fritsch, E.F., Sambrook, J., 1982. Molecular Cloning: a Laboratory Manual, vol. 545. Cold spring harbor laboratory, Cold Spring Harbor, NY.Google Scholar
  43. Manuel-Navarrete, D., Gallopín, G., Blanco, M., Díaz-Zorita, M., Ferraro, D., Herzer, H., Laterra, P., Morello, J., Murmis, R., Pengue, W., Pineiro, M., Podestá, G., Satorre, H., Torrent, M., Torres, F., Viglizzo, E., Caputo, G., Celis, A., 2005. Análisis sistémico de la agriculturización en la pampa húmeda argentina y sus consecuencias en regiones extrapampeanas: Sostenibilidad, brechas de cnocimiento e integración de políticas,C EPAL- SERIE Medioambiente y Desarrollo, 118., pp. 1–65.Google Scholar
  44. McRae, B.H., Dickson, B.G., Keitt, T.H., Shah, V.B., 2008. Using circuit theory to model connectivity in ecology, evolution, and conservation. Mol. Ecol. 89, 2712–2724.CrossRefGoogle Scholar
  45. Medan, D., Torretta, J.P., Hodara, K., de la Fuente, E.B., Montaldo, N.H., 2011. Effects of agriculture expansion and intensification on the vertebrate and invertebrate diversity in the Pampas of Argentina. Biodivers. Conserv. 20, 3077–3100,  https://doi.org/10.1007/s10531-011-0118-9.CrossRefGoogle Scholar
  46. Paruelo, J.M., Guerschman, J.P., Verón, S., 2005. Expansión agrícola y cambios en el uso del suelo. Cienc. Hoy 15, 14–23.Google Scholar
  47. Peakall, R.O.D., Smouse, P.E., 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295.CrossRefGoogle Scholar
  48. Peakall, R., Ruibal, M., Lindenmayer, D.B., 2003. Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus Fuscipes. Evolution 57, 1182–1195,  https://doi.org/10.1111/j.0014-3820.2003.tb00327.x.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Priotto, J.W., Steinmann, A.R., 1999. Factors affecting home range size and overlap in Akodon azarae (Muridae: Sigmodontinae) in natural pasture of Argentina. Acta Theriol. 44, 37–44.CrossRefGoogle Scholar
  50. Priotto, J., Steinmann, A., Polop, J., 2002. Factors affecting home range size and overlap in Calomys venustus (Muridae: Sigmodontinae) in Argentine agroecosystems. Mamm. Biol. 67, 97–104,  https://doi.org/10.1078/1616-5047-00014.CrossRefGoogle Scholar
  51. Priotto, J.W., Polop, J., 1997. Space and time use in syntopic populations of Akodon azarae and Calomys venustus (Rodentia, Muridae). Z. Säugetierkunde 62, 30–36.Google Scholar
  52. Renner, S.C., Suarez-Rubio, M., Wiesner, K.R., Drögemüller, C., Gockel, S., Kalko, E.K., Frantz, A.C., 2016. Using multiple landscape genetic approaches totest the validity of genetic clusters in a species characterized by an isolation-by-distance pattern. Biol. J. Linn. Soc. 118 (2), 292–303,  https://doi.org/10.1111/bij.12737.CrossRefGoogle Scholar
  53. Rice, W.R., 1989. Analyzing tables of statistical tests. Evolution 43 (1), 223–225,  https://doi.org/10.2307/2409177,22343.CrossRefGoogle Scholar
  54. Schweizer, M., Excoffier, L., Heckel, G., 2007. Fine-scale genetic structure and dispersal in the common vole (Microtus arvalis). Mol. Ecol. 16, 2463–2473,  https://doi.org/10.1111/j.1365-294X.2007.03284.x.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Serafini, V.N., Priotto, J.W., Gómez, M.D., 2019. Effects of agroecosystem landscape complexity on small mammals: a multi-species approach at different spatial scales. Landscape Ecol. 34, 1117–1129,  https://doi.org/10.1007/s10980-019-00825-8.CrossRefGoogle Scholar
  56. Simone, I., Cagnacci, F., Provensal, C., Polop, J., 2010. Environmental determinants of the small mammal assemblage in an agroecosystem of central Argentina: the role of Calomys musculinus. Mamm. Biol. 75, 496–509,  https://doi.org/10.1016/j.mambio.2009.12.002.CrossRefGoogle Scholar
  57. Slatkin, M., 1985. Gene flow in natural populations. Ann. Rev. Ecol. Syst 16, 393–430,  https://doi.org/10.1146/annurev.es.16.110185.002141.CrossRefGoogle Scholar
  58. Sommaro, L.V., Ph D thesis 2012. Movimiento de Calomys musculinus en poblaciones naturales y experimentales. Facultas de Ciencias Exactas, Físico-Químico y Naturales. Universidad Nacional de Río Cuarto.Google Scholar
  59. Sommaro, L., Gomez, D., Bonatto, F., Steinmann, A., Chiappero, M., Priotto, J., 2010. Corn mice (Calomys musculinus) movement in linear habitats of agricultural ecosystems. J. Mammal. 91, 668–673,  https://doi.org/10.1644/09-MAMM-A-232.1.CrossRefGoogle Scholar
  60. Suárez, O.V., Ph D thesis 1996. Estrategias reproductivas y cuidado parental en Akodon azarae (Rodentia, Muridae). Universidad de Buenos Aires, Buenos Aires, Argentina.Google Scholar
  61. Taylor, A.C., Tyndale-Biscoe, H., Lindenmayer, D.B., 2007. Unexpected persistence on habitat islands: genetic signatures reveal dispersal of a eucalypt-dependent marsupial through a hostile pine matrix. Mol. Ecol. 16, 2655–2666,  https://doi.org/10.1111/j.1365-294X.2007.03331.x.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Van Oosterhout, C., Hutchinson, W.F., Wills, D.P.M., Shipley, P., 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538,  https://doi.org/10.1111/j.1471-8286.2004.00684.x.CrossRefGoogle Scholar
  63. Vera, N.S., Chiappero, M.B., Priotto, J.W., Gardenal, C.N., 2011. Isolation of microsatellite loci in Akodon azarae (Muridae, Sigmodontinae) and cross-amplification in other Akodontini species. J. Genet. 92, 25–29,  https://doi.org/10.1007/s12041-011-0044-3.CrossRefGoogle Scholar
  64. Viglizzo, E., Lértora, F., Pordomingo, A., Bernardos, J., Roberto, Z., Del Valle, H., 2001. Ecological lessons and applications from one century of low external-input farming in the pampas of Argentina. Ecosyst. Environ. 83, 65–81,  https://doi.org/10.1016/s0167-8809(00)00155-9.CrossRefGoogle Scholar
  65. Volante, J., Mosciaro, J., Morales Poclava, M., Vale, L., Castrillo, S., Sawchik, J., Tiscornia, G., Fuente, M., Maldonado, I., Vega, A., Trujillo, R., Cortéz, L., Paruelo, J., 2015. Expansión agrícola en Argentina, Bolivia, Paraguay, Uruguay y Chile entre 2000-2010: Caracterización espacial mediante series temporales de índices de vegetación. RIA. Revista de investigaciones agropecuarias 41, 179–191.Google Scholar
  66. Weir, B.S., Cockerham, C.C., 1984. Estimating F-statistics for the analysis of population structure. Evolution (N.Y.) 38, 1358–1370,  https://doi.org/10.2307/2408641.Google Scholar
  67. Zuleta, G.A., Ph D thesis 1989. Estrategia de historias de vida del ratón del pastizal pampeano, Akodon azarae. Facultad de ciencias exactas y naturales. Universidad Nacional de Buenos Aires.Google Scholar
  68. Zuleta, G.A., Bilenca, D.N., 1992. Seasonal shifts within juvenile recruit sex ratio of Pampas mice (Akodon azarae). J. Zool. 227 (3), 397–404.CrossRefGoogle Scholar
  69. Zuleta, G., Kravetz, F.O., Busch, M.G.A. Zuleta, R.E., Bilenca, D.N., 1992. Seasonal shifts within juvenile recruit sex ratio of Pampas mice (Akodon azarae). J. Zool. 227 (3), 397–404.CrossRefGoogle Scholar
  70. Zuleta, G., Kravetz, F.O., Busch, M., Percich, R.E., 1988. Dinámica poblacional del ratón del pastizal pampeano (Akodon azarae) en ecosistemas agrarios de Argentina. Revista Chilena de Historia Natural 61, 231–244.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2019

Authors and Affiliations

  • Noelia Soledad Vera
    • 1
    • 2
    Email author
  • Marina Beatriz Chiappero
    • 1
    • 2
  • José Waldemar Priotto
    • 3
  • Lucía Valeria Sommaro
    • 4
  • Andrea Rosa Steinmann
    • 3
  • Cristina Noemí Gardenal
    • 2
  1. 1.Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Genética de Poblaciones y EvoluciónUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Instituto de Diversidad y Ecología Animal (IDEA)CórdobaArgentina
  3. 3.Grupo de Investigaciones en Ecología Poblacional y Comportamental (GIEPCO), Instituto de Ciencias de la Tierra, Biodiversidad y Sustentabilidad Ambiental (ICBIA)Universidad Nacional de Río Cuarto-Consejo Nacional de Investigaciones Científicas y TécnicasArgentina
  4. 4.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Ecorregiones Andinas (INECOA)Universidad Nacional de Jujuy.San Salvador de JujuyArgentina

Personalised recommendations