Advertisement

Mammalian Biology

, Volume 95, Issue 1, pp 15–17 | Cite as

Rapid descent flight by a molossid bat (Chaerephon plicatus) returning to its cave

  • Christian C. VoigtEmail author
  • Sara Bumrungsri
  • Manuel Roeleke
Short communication

Abstract

In Southeast Asia, wrinkle-lipped bats (Chaerephon plicatus) roost in colonies that may count several million individuals. Birds of prey frequently hunt these bats when they emerge from or return to their colonies. Here, we report on an extreme anti-predator behavior of this species during return flights at dawn. Based on data logger, we documented that bats may ascend to several hundred meters altitude above the cave shortly before diving at high speed (maximum 20 m/s) towards the entrance. Dive rates were 40 times higher than those reported for other open-space foraging bats performing flapping descending flights. Based on high speed video recordings, we show that C. plicatus brake the rapid descents close to the cave entrance using the tail wing membrane and partly extended wings. Maximum gravitational forces involved 2.4 G, probably when adjusting abruptly the speed close to ground. We argue that these descending maneuvers may constitute an anti-predator strategy of C. plicatus, since such descents may be too fast and complex for birds of prey at the cave entrance, particularly when performed by thousands of individuals at the same time.

Keywords

Aerodynamics Anti-predator strategy Escape behavior Landscape of fear 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chaverri, G., Ancillotto, L., Russo, D., 2018. Social communication in bats. Biol. Rev. 93, 1983–1954.Google Scholar
  2. Cvikel, N., Berg, K.E., Levin, E., Hurme, E., Borissov, I., Boonman, A., Amichai, E., Yovel, Y., 2015. Bats aggregate to improve prey search but might be impaired when their density becomes too high. Curr. Biol. 25, 206–211.CrossRefGoogle Scholar
  3. Egert-Berg, It, Hurme, E.R., Greif, S., Goldstein, A., Harten, L., Herrera, M.L.G., Flores-Martinez, J.J., Vales, A.T., Johnston, D.S., Eitan, O., Borissov, I., Shipley, J.R., Medellin, R.A., Wilkinson, G.S., Goerlitz, H.R., Yovel, Y., 2018. Resource ephemerality drives social foraging in bats. Curr. Biol. 28, 3667–3673.CrossRefGoogle Scholar
  4. Hedenström, A., Liechti, F., 2001. Field estimates of body drag coefficient on the basis of dives in passerine birds. J. Exp. Biol. 204, 1167–1175.PubMedGoogle Scholar
  5. Hedenström, A., Johansson, L.C., Spedding, G.R., 2009. Bird or bat: comparing airframe design and flight performance. Bioinspired Biomim. Nanobiomater. 4, 015001.Google Scholar
  6. Leelapaibul, W., Bumrungsri, S., Pattanawiboon, A., 2005. Diet of wrinkle-lipped free-tailed bat (Tadarida plicata Buchannan, 1800) in central Thailand: insectivorous bats potentially act as biological pest control agents. Acta Chiropterol. 7, 111–119.CrossRefGoogle Scholar
  7. McCracken, G.F., Gillam, E.H., Westbrook, J.K., Lee, Y.F., Jensen, M.L., Balsley, B.B., 2008. Brazilian free-tailed bats (Tadarida brasiliensis: Molossidae, Chiroptera) at high altitude: links to migratory insect populations. Integr. Comp. Biol. 48, 107–118.CrossRefGoogle Scholar
  8. McCracken, G.F., Safl, K., Kunz, T.H., Dechmann, D.K.N., Swartz, S.M., Wikelski, M., 2016. Airplane tracking documents the fastest flight speeds recorded for bats. R. Soc. Open Sci. 3, 160398.Google Scholar
  9. Mikula, P., Morelli, F., Lucan, R.K., Jones, D.N., Tryjanowski, P., 2016. Bats as prey of diurnal birds: aglobal perspective. Mamm. Rev. 46, 160–174.CrossRefGoogle Scholar
  10. Roeleke, M., Blohm, T., Kramer-Schadt, S., Yovel, Y., Voigt, C.C., 2016. Habitat use of bats in relation to wind turbines revealed by GPS tracking. Sci. Rep. 6, 28961.Google Scholar
  11. Roeleke, M., Bumrungsri, S., Voigt, C.C., 2018a. Bats probe the aerosphere during landscape-guided altitudinal flights. Mamm. Rev. 48, 7–11.CrossRefGoogle Scholar
  12. Roeleke, M., Teige, T., Hoffmeister, U., Klingler, F., Voigt, C.C., 2018b. Aerial-hawking bats adjust their use of space to the lunar cycle. Mov. Ecol., 11.Google Scholar
  13. Voigt, C.C., Frick, W.F., Holderied, M.W., Holland, R., Keith, G., Mello, M.A.R., Plowright, R.K., Swartz, S., Yovel, Y., 2017. Principles and patterns of bat movements: from aerodynamics to ecology. Quart. Rev. Biol. 92, 267–287.CrossRefGoogle Scholar
  14. Voigt, C.C., Currie, S.E., Fritze, M., Roeleke, M., Lindecke, O., 2018. Conservation strategies for bats flying at high altitudes. BioScience 68, 427–435.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2019

Authors and Affiliations

  • Christian C. Voigt
    • 1
    • 2
    Email author
  • Sara Bumrungsri
    • 3
  • Manuel Roeleke
    • 1
    • 2
  1. 1.Leibniz Institute for Zoo and Wildlife ResearchBerlinGermany
  2. 2.Institute for BiologyFreie Universität BerlinBerlinGermany
  3. 3.Department of BiologyPrince of Songkla UniversityHat YaiThailand

Personalised recommendations