Advertisement

Mammalian Biology

, Volume 95, Issue 1, pp 9–14 | Cite as

How giant are giant armadillos? The morphometry of giant armadillos (Priodontes maximus Kerr, 1792) in the Pantanal of Brazil

  • Arnaud Leonard Jean DesbiezEmail author
  • Gabriel Favero Massocato
  • Danilo Kluyber
  • Camila Do Nascimento Luba
  • Nina Attias
Short communication

Abstract

Morphometries is the quantitative study of organisms shape and size. Intrinsic (e.g. age and sex) and extrinsic (e.g. abiotic conditions) factors can be related to morphological diversity and can aid in the study of species biology and ecology. Giant armadillos have rarely been captured in the wild and very little is known about the species. Here we aimed to characterize body measurements of free-living giant armadillos (Priodontes maximus) in mid-western Brazil and evaluate how these measurements vary between sexes and age classes to gain insights on the species biology and ecology. We captured 28 armadillos in the study area, 18 adults (9 males, 9 females) and 10 subadults (6 males, 4 females) and assessed twenty-five different morphometric measurements for each captured armadillo. To evaluate if age class and sex of adult individuals can be differentiated by a concise set of morphometric measurements we used Linear Discriminant Analyses. We encountered significant morphometric differentiation between age classes and report seven parameters that best discriminate individuals between age classes which may allow the identification of individual’s age class in future studies. The wide morphometric variation in subadults could indicate that individuals have a long developmental process between weaning and sexual maturity. Morphometric differentiation between sexes was possible through the association of three morphological parameters and adult males are larger and heavier than females. Although we were limited by the number of animals sampled in previous studies, females presented similar body mass across studied sites, while males presented variation of up to ten kilos across the species distribution. This indicates that the degree of sexual dimorphism can vary among localities and raises interesting ecological questions regarding the species reproductive system. This variation can be related to abiotic factors (e.g. latitude, temperature and topography), differences in productivity among biomes (i.e. resource abundance and distribution), population density, and/or genetic variation between populations and should be explored further. We propose the measurements used here be used as standard measurements for this species since it encompasses all of the most distinctive features of the species and allows a full morphological characterization, enabling the future comparison between populations of this widely distributed species.

Keywords

Biometrics Cingulata Geographical variation Sexual dimorphism Xenarthra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abba, A.M., Superina, M., 2010. The 2009/2010 Armadillo red list assessment. Edentata 11 (2), 135–184.Google Scholar
  2. Abba, A.M., Cassini, G.H., Cassini, M.H., Vizcaino, S.F., 2011. Natural history of the screaming hairy armadillo Chaetophractus vellerosus (Mammalia: xenarthra: dasypodidae). Rev. Chil. Hist. Nat. 84, 51–64.Google Scholar
  3. Abdon, M.M., Silva, J.S.V., Pott, V.J., Pott, A., Silva, M.P., 1998. Utilização de dados analógicos do Landsat-TM na discriminação da vegetação de parte da sub-região da Nhecolândia no Pantanal. Pesq. Agropec. Bras. 33, 1799–1813.Google Scholar
  4. Anacleto, T.C.S., Thesis (Master’s in Ecology) 1997. Dieta e utilização de habitat do tatu-canastra (Priodontes maximus Kerr, 1792) numa área de cerrado do Brasil central. Instituto de Ciências Biológicas, Universidade de Brasilia, Brasilia - DF, 64 pp.Google Scholar
  5. Anacleto, T.C.S., Miranda, F., Medri, I., Cuéllar, E., Abba, A.M., Superina, M., 2014. Priodontes maximus. International Union for Conservation and Nature, Red List of Threatened Species, Version 2014.3 (Accessed 7 July 2018) http://www.iucnredlist.orgGoogle Scholar
  6. Carter, T.S., 1983. The burrows of giant armadillo, Priodontes maximus (Edentata: Dasypodidae). Saugetierkindliche Mitteilungen 31 (1), 47–53.Google Scholar
  7. Carter, T.S., 1985. Armadillos of Brazil. Nat. Geogr. Soc. Res. Rep. 20, 101–107.Google Scholar
  8. Carter, T.S., Encarnação, CD., 1983. Characteristics of burrows by four species of armadillos in Brazil. J. Mammal. 64, 103–108.Google Scholar
  9. Carter, T.S., Superina, M., Leslie, D.M., 2016. Priodontes maximus (Cingulata: Chlamyphoridae). Mammal. Species 48 (932), 21–34.Google Scholar
  10. Ceresoli, N., Jimenez, G.T., Duque, E.F., 2003. Datos morfométricos de los armadillos del complejo ecológico municipal de Saénz Peña, Província del Chaco, Argentina. Edentata 5, 35–37.Google Scholar
  11. Clutton-Brock, T.H., Harvey, P.H., 1983. The functional significance of variation in body size among mammals. In: Eisenberg, J.F., Kleiman, D.G. (Eds.), Advances in the Study of Mammalian Behavior. American Society of Mammalogists, Stillwater, pp. 632–663.Google Scholar
  12. Desbiez, A.L.J., Kluyber, D., 2013. The role of giant armadillos (Priodontes maximus) as physical ecosystem engineers. Biotropica 45 (5), 537–540.Google Scholar
  13. Desbiez, A.L.J., Massocato, G.F., Kluyber, D., Santos, R.C.F., 2018. Unraveling the cryptic life of the southern naked-tailed armadillo, Cabassous unicinctus squamicaudis (Lund, 1845), in a Neotropical wetland: home range, activity pattern, burrow use and reproductive behaviour. Mammal. Biol. 91, 95–103.Google Scholar
  14. Eisenberg, J.F., Redford, K.H., 1999. Mammals of the Neotropics: The Central Neotropics. Ecuador, Peru, Bolivia, Brazil. The University of Chicago Press, Chicago, ILGoogle Scholar
  15. Emmons, L.H., Feer, F., 1997. Neotropical Rainforest Mammals: A Field Guide. The University of Chicago Press, Chicago, IL.Google Scholar
  16. Encarnação, C., Master’s thesis 1986. Contribuição à biologia dos tatus (Dasypodidae, Xenarthra) da Serra da Canastra, Minas Gerais. Universidade Federal do Rio de Janeiro, Rio de Janeiro.Google Scholar
  17. Fonseca, G.A.B., Herrmann, G., Leite, Y.L.R., Mittermeier, R.A., Rylands, A.B., Patton, J.L., 1996. Lista anotada dos mamíferos do Brasil. Belo Horizonte. Occasional Papers in Conservation Biology 4.Google Scholar
  18. Franicevic, M., Sinovcic, G., Cikes Kec, V., Zorica, B., 2005. Biometry analysis of the Atlantic bonito, Sarda sarda (Bloch, 1793), in the Adriatic Sea. Acta Adriat. 46, 213–222.Google Scholar
  19. Geise, L., Moraes, D.A., Silva, H.S., 2005. Morphometric differentiation and distributional notes of three species of Akodon (Muridae, Sigmodontinae, Akodontini) in the Atlantic coastal area of Brazil. Arq. Mus. Nac. Rio de Janeiro. 63(1), 63–74.Google Scholar
  20. Gotelli, N.J., Ellison, A.M., 2004. A Primer to Ecological Statistics. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  21. Guimarães, M.M., Available online at: 1997. Area de vida, territorialidade e dieta do tatu-bola, Tolypeutes tricinctus (Xenarthra, Dasypodidae), num Cerrado do Brasil Central. Thesis (Master’s in Ecology). Instituto de Ciências Biológicas, Universidade de Brasilia, Brasilia - DF (Accessed 8 August 2016) http://www.pgecl.unb.br/images/sampledata/arquivos/dissertacoes/1990al999/1997/Marilia%20Marques%20Guimareas.PDF.Google Scholar
  22. Leite-Pitman, R., Powell, G., Cruz, D., Escobedo, M., Escobar, K., Vilca, V., Mendoza, A., 2004. Habitat use and activity of the giant armadillo (Priodontes maximus): preliminary data from southeastern Peru. Annual Meeting of the Society for Conservation Biology.Google Scholar
  23. Massocato, G.F., Desbiez, A.L.J., 2017. Presença e importância do tatu-canastra, Priodontes maximus (Kerr, 1792), na maior área protegida do leste do Estado de Mato Grosso do Sul, Brasil. Edentata 18, 26–33.Google Scholar
  24. McDonough, CM., Loughry, W.J., 2001. Natal recruitment and adult retention in a population of nine-banded armadillos. Acta Theriol. 46 (4), 393–406.Google Scholar
  25. Medina, A.I., Marti, D.A., Bidau, C.J., 2007. Subterranean rodents of the genus Ctenomys (Caviomorpha, Ctenomyidae) follow the converse to Bergmann’s rule. J. Biogeogr. 34, 1439–1454.Google Scholar
  26. Medri, I.M., Mourão, C.M., Marinho-Filho, J., 2009. Morfometria de tatu-Peba, Euphractus sexcinctus (Linnaeus, 1758), no Pantanal da Nhecolândia, MS. Edentata 8-10, 35–40.Google Scholar
  27. Medri, I.M., Mourão, C.M., Rodrigues, F.H.C, 2011. Ordern cingulata. In: Reis, N.R., Peracchi, A.L., Pedro, W.A., Lima, L.P. (Eds.), Mamíferos do Brasil., pp. 75–90, Author’s Edition, Londrina.Google Scholar
  28. Meritt Jr., D.A., 2006. Research questions on the behavior and ecology of the giant armadillo (Priodontes maximus). Edentata. 7, 30–33.Google Scholar
  29. Milne, N., Vizcaino, S.F., Fernicola, J.C., 2009. A 3D geometric morphometris analysis of digging ability in the extant and fossil cingulate humerus. J. Zool. 278, 48–56.Google Scholar
  30. Möller-Krull, M., Delsuc, F., Churakov, C., Marker, C., Superina, M., Brosius, J., Douzery, E.J.P., Schimtz, J., 2007. Retroposed elements and their flanking regions resolve the evolutionary history of Xenarthran mammals (armadillos, anteaters, and sloths). Mol. Biol. Evol. 24, 2573–2582.PubMedGoogle Scholar
  31. Moraes, D.A., 2003. Morfometria geométrica e a revolução morfométrica - Localizando e visualizando mudanças na forma dos organismos. BIOLETIM, ano III, a 3.Google Scholar
  32. Noss, A.J., Pena, R., Rumiz, D.I., 2004. Camera trapping Priodontes maximus in the dry forests of Santa Cruz, Bolivia. Endang. Species Update. 21 (2), 43–52.Google Scholar
  33. Nowak, R.M., 1999. Walker’s Mammals of the World. The Johns Hopkins University Press, Baltimore and London.Google Scholar
  34. Pagh, S., Hansen, M.S., Jensen, B., Pertoldi, C., Chriél, M., 2018. Variability in body mass and sexual dimorphism in Danish red foxes (Vulpes vulpes) in relation to population density. Zool. Ecol. 28 (1), 1–9.Google Scholar
  35. Quin, D.C., Smith, A.P., Norton, T.W., 1996. Ecogeographic variation in size and sexual dimorphism in sugar gliders and squirrel gliders (Marsupialia: Petauridae). Aust. J. Zool. 44, 19–45.Google Scholar
  36. Rodriguez, M.Á., Olalla-Tárraga, M.Á., Hawkins, B.A., 2008. Bergmann’s rule and the geography of mammal body size in the Western hemisphere. Global Ecol. Biogeogr. 17, 274–283.Google Scholar
  37. Rohlf, F.J., 1990. Morphometries. Annu. Rev. Ecol. Syst. 21, 299–316.Google Scholar
  38. Sikes, R.S., Animal Care and Use Committee of the American Society of Mammalogists, 2016. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J. Mammal. 97 (3), 663–688.PubMedPubMedCentralGoogle Scholar
  39. Silveira, L., Jácomo, A.T.A., Furtado, M.M., Torres, N.M., Sollmann, R., Vynne, C., 2009. Ecology of the giant armadillo (Priodontes maximus) in the grasslands of Central Brazil. Edentata 8-10, 25–34.Google Scholar
  40. Soriano, B.M.A., 2000. Boletim agrometeorologico: Fazenda Nhumirim. Embrapa Pantanal. Bol. Agrometeorologico. 4, 81.Google Scholar
  41. Storz, J.F., Bhat, H.R., Kunz, T.H., 2000. Social structure of a polygnous tent-making bat, Cynopterus sphinx (Megachiroptera). J. Zool. 251, 151–165.Google Scholar
  42. Storz, J.F., Balasingh, J., Bhat, H., Nathan, P.T., Doss, D.P.S., Prakash, A.A., Kunz, T.H., 2001. Clinal variation in body size and sexual dimorphism in an Indian fruit bat, Cynopterus sphinx (Chiroptera: Pteropodidae). Biol. J. Linn. Soc. Lond. 72 (1), 17–31.Google Scholar
  43. Superina, M., Pagnutti, N., Abba, A.M., 2014. What do we know about armadillos? An analysis of four centuries of knowledge about a group of South American mammals, with emphasis on their conservation. Mamm. Rev. 44, 69–80.Google Scholar
  44. Tomas, W.M., Campos, Z., Desbiez, A.L.J., Kluyber, D., Borges, P.A.L., Mouräo, C., 2013. Mating behavior of the six-banded armadillo Euphractus sexcinctus in the Pantanal wetland, Brazil. Edentata 14, 87–89.Google Scholar
  45. Yom-Tov, Y., Nix, H., 1986. Climatological correlates for body size of five species of Australian mammals. Biol. J. Linn. Soc. 29, 245–262.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2019

Authors and Affiliations

  • Arnaud Leonard Jean Desbiez
    • 1
    • 2
    • 3
    Email author
  • Gabriel Favero Massocato
    • 1
    • 3
    • 4
  • Danilo Kluyber
    • 1
    • 3
    • 5
  • Camila Do Nascimento Luba
    • 1
    • 6
  • Nina Attias
    • 1
    • 7
  1. 1.Instituto de Conservaçào de Animais Silvestres (ICAS)Campo GrandeBrazil
  2. 2.Royal Zoological Society of Scotland (RZSS)EdinburghUK
  3. 3.Instituto de Pesquisas Ecológicas (IPÊ)Nazaré PaulistaBrazil
  4. 4.Houston ZooHoustonUSA
  5. 5.Naples Zoo at Caribbean GardensNaplesUSA
  6. 6.Programa de Pós-Graduação em Medicina Veterinária - Clínica e Reprodução AnimaiUniversidade Federal FluminenseNiterói, Rio de JaneiroBrazil
  7. 7.Programa de Pós-Graduação em Biologia AnimalUniversidade Federal do Mato Grosso do SulCampo GrandeBrazil

Personalised recommendations