Advertisement

Mammalian Biology

, Volume 95, Issue 1, pp 112–122 | Cite as

Periodic resource scarcity and potential for interspecific competition influences distribution of small carnivores in a seasonally dry tropical forest fragment

  • Wyatt Joseph PetersenEmail author
  • Tommaso Savini
  • Robert Steinmetz
  • Dusit Ngoprasert
Original Investigation

Abstract

Small, isolated, and disturbed forest fragments potentially offer valuable habitats for small carnivore conservation. Yet the influence of resource availability—critical for survival and reproduction—on small carnivore habitat use within these modified environments is poorly understood. We conducted camera-trap surveys within a seasonally dry tropical forest fragment (148 km2) in northeastern Thailand to better understand the influence resource availability has on small carnivore habitat use within fragmented areas. Species occupancy models including both habitat and resource variables were assessed across periods of high and low resource availability (fruit abundance and rodent biomass). Species with similar resource or habitat preferences may also compete when resources are low. Therefore, we tested species with shared preferences for patterns of spatial co-occurrence and temporal overlap. Fruit availability influenced the distribution of common palm civet (Paradoxurus hermaphroditus), while rodent biomass influenced Asiatic jackal (Canis aureus), leopard cat (Prionailurus bengalensis), and small Indian civet (Viverricula indica), but only during annual periods of scarcity. In contrast, small Asian mongoose (Herpestes javanicus) was highly selective for a specific habitat (dry dipterocarp forest) regardless of seasonal fluctuations in food availability. Occupancy increased for all species during periods of resource scarcity, with leopard cat and Asiatic jackal experiencing the greatest increases (139% and 58%, respectively). Species with shared resource and habitat preferences appeared to avoid each other, either spatially or temporally. For example, leopard cat and Asiatic jackal co-occurred spatially less than would be expected, though only when rodents were scarce. Similarly, small Indian civet and small Asian mongoose, which used the same habitat and co-occurred spatially at a rate greater than expected, were active at different times. Our results indicate that seasonal resource fluctuations and interspecific interactions strongly influence the distribution of sympatric small carnivores in a fragmented forest.

Keywords

Fragmentation Habitat use Interspecific interactions Resource availability Small carnivores 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, T.W., 2010. Uninformative parameters and model selection using akaike’s information criterion. J. Wildl. Manage 74, 1175–1178.CrossRefGoogle Scholar
  2. Ashton, P.S., Reinmar, R., Kassim, A.R., 2014. On the Forests of Tropical Asia: Lest the Memory Fade. Kew Publishing.Google Scholar
  3. Barlow, J., Gardner, T.A., Araujo, I.S., Avila-Pires, T.C., Bonaldo, A.B., Costa, J.E., et al., 2007. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl. Acad. Sci. U. S.A. 104, 18555–18560.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barton, K., Availableat: 2018. MuMIn: Multi-model Inference. R Package Version 1.40.4. http://CRAN.R-project.org/package=MuMIn.Google Scholar
  5. Börger,.L, Dalziel, B.D., Fryxell, J.M., 2008. Are there general mechanisms of animal home range behaviour? A review and prospects for future research. Ecol. Lett. 11, 637–650.Google Scholar
  6. Braczkowski, A.R., Balme, G.A., Dickman, A., Fattebert, J., Johnson, P., Dickerson, T., Macdonald, D.W., Hunter, L., 2016. Scent lure effect on camera-trap based leopard density estimates. PLoS One 11, e0151033.Google Scholar
  7. Bregman, T.P., Lees, A.C., Seddon, N., MacGregor, H.E.A., Darski, B., Aleixo, A., et al., 2015. Species interactions regulate the collapse of biodiversity and ecosystem function in tropical forest fragments. Ecology 96, 2692–2704.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bu, H., Wang, F., McShea, W.J., Lu, Z., Wang, D., Li, S., 2016. Spatial co-occurrence and activity patterns of mesocarnivores in the temperate forests of southwest China. PLoS One 11, e0164271.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference: a Practical Information-theoretic Approach. Springer, New York.Google Scholar
  10. Cablk, M.E., Sagebie, Heaton J.S., Valentin, C., 2008. Olfaction-based detection distance: a quantitative analysis of how far away dogs recognize torotise odor and follow it to source. Sensors 8, 2208–2222.CrossRefGoogle Scholar
  11. Carbone, C., Gittleman, J.L., 2002. A common rule for the scaling of carnivore density. Science 295, 2273–2276.CrossRefGoogle Scholar
  12. Carbone, C., Mace, G.M., Roberts, S.C., Macdonald, D.W., 1999. Energetic constraints on the diet of terrestrial carnivores. Nature 402, 286–288.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chiang, P., Pei, K.J., Vaughan, M.R., Li, C., 2012. Niche relationships of carnivores in a subtropical primary forest in southern Taiwan. Zool. Stud. 51, 500–511.Google Scholar
  14. Chutipong, W., Steinmetz, R., Savini, T., Gale, G.A., 2017. Assessing resource and predator effects on habitat use of tropical small carnivores. Assess. Large Mamm. Potential Tululujia Wildl. Reserve Southwest. Ethiop. 62, 21–36, http://dx.doi.org/10.1007/s13364-016-0283-z.Google Scholar
  15. Chutipong, W., Tantipisanuh, N., Ngoprasert, D., Lynam, A.J., Steinmetz, R., Jenks, K.E., et al., 2014. Current distribution and conservation status of small carnivores in Thailand: a baseline review. Small Carniv. Conserv. 51, 96–136.Google Scholar
  16. Clavel, J., Julliard, R., Devictor, V., 2011. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228.CrossRefGoogle Scholar
  17. Crooks, K.R., Soulé, M.E., 1999. Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400, 563–566.CrossRefGoogle Scholar
  18. Di Bitetti, M.S., De Angelo, C.D., Di Blanco, Y.E., Paviolo, A., 2010. Niche partitioning and species coexistence in a Neotropical felid assemblage. Acta Oecol. 36, 403–412.CrossRefGoogle Scholar
  19. Di Bitetti, M.S., Di Blanco, Y.E., Pereira, J.A., Paviolo, A., Pérez, I.J., 2009. Time partitioning favors the coexistence of sympatric crab-eating foxes (Cerdocyon thous) and Pampas foxes (Lycalopex gymnocercus). J. Mammal. 90, 479–490.CrossRefGoogle Scholar
  20. Donadio, E., Buskirk, S.W., 2006. Diet, morphology, and interspecific killing in carnivora. Am. Nat. 167, 524–536.CrossRefGoogle Scholar
  21. Efford, M.G., 2015. Secr: Spatially Explicit Capture-recapture Models. R Package Version 2.9.5. http://CRAN.R-project.org/package=secr.Google Scholar
  22. Estes, JA, Terbourgh, J., Brashares, J.S., Power, M.E., Berger, J., Bond, W.J., et al., 2011. Trophic downgrading of planet Earth. Science 333, 301–306.CrossRefGoogle Scholar
  23. Fahrig, L., Rytwinski, T., 2009. Effects of roads on animal abundance: and empirical review and synthesis. Ecol. Soc. 14, 21.CrossRefGoogle Scholar
  24. Ferguson, S.H., Taylor, M.K., Born, E.W., Rosing-Asvid, A., Messier, F., 1999. Determinants of home range size for polar bears (Ursus maritimus). Ecol. Lett. 2, 311–318.CrossRefGoogle Scholar
  25. Fiske, I.J., Chandler, R.B., Royle, JA, 2011. Unmarked: Models for Data From Unmarked Animals. http://CRAN.R-project.org/package=unmarked.Google Scholar
  26. Fuller, T.K., Sievert, P.R., 2001. Carnivore demography and the consequences of changes in prey availability. In: Gittleman, J.L., Funk, S.M., Macdonald, D.W., Wayne, R.K. (Eds.), Carnivore Conservation. Cambridge University Press, pp. 163–177.Google Scholar
  27. Gelman, A., 2008. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 27, 2865–2873.CrossRefGoogle Scholar
  28. Gerber, B.D., Karpanty, S.M., Kelly, M.U., 2012a. Evaluating the potential biases in carnivore capture-recapture studies associated with the use of lure and varying density estimation techniques using photographic-sampling data of the Malagasy civet. Pop. Ecol. 54, 43–54.CrossRefGoogle Scholar
  29. Gerber, B.D., Karpanty, S.M., Randrianantenaina, J., 2012b. Activity patterns of carnivores in the rain forests of Madagascar: implications for species coexistence. J. Mammal. 93, 667–676.CrossRefGoogle Scholar
  30. Giam, X., Clements, G.R., Aziz, S.A., Chong, K.Y., Miettinen, J., 2011. Rethinking the ‘back to wilderness’ concept for Sundaland’s forests. Biol. Conserv. 144, 3149–3152.CrossRefGoogle Scholar
  31. Gittleman, J.L., Harvey, P.H., 1982. Carnivore home-range size, metabolic needs and ecology. Behav. Ecol. Sociolbiol. 10, 57–63.CrossRefGoogle Scholar
  32. Grassman, L.I., Tewes, M.E., Silvy, N.J., Kreetiyutanont, K., 2005. Spatial organization and diet of the leopard cat (Prionailurus bengalensis) in north-central Thailand. J. Zool. 266, 45–54, http://dx.doi.org/10.1017/S095283690500659X.CrossRefGoogle Scholar
  33. Griffith, D.M., Veech, JA, Marsh, C.J., 2016. Cooccur: probabilistic species co-occurrence analysis in R. J. Stat. Softw. 69, 1–17.CrossRefGoogle Scholar
  34. Hirsch, B.T., 2010. Tradeoff between travel speed and olfactory food detection in ring-tailed coatis (Nasua nasua). Ethology 116, 671–679.Google Scholar
  35. Hoyle, M., Harborne, A.R., 2005. Mixed effects of habitat fragmentation on species richness and community structure in a microarthropod microecosystem. Ecol. Entomol. 30, 684–691.CrossRefGoogle Scholar
  36. Hunter, M.D., Price, P.W., 1992. Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73, 724–732.Google Scholar
  37. Karanth, K.U., Sunquist, M.E., 2000. Behavioural correlates of predation by tiger (Panthera tigris), leopard (Panthera pardus), and dhole (Cuon alpinus) in Nagarahole. India. J. Zool. 250, 255–265.CrossRefGoogle Scholar
  38. Joshi, A.R., Smith, J.L.D., Cuthbert, F.J., 1995. Influence of food distribution and predation pressure on spacing behavior in palm civets. J. Mamm. 76, 1205–1212.CrossRefGoogle Scholar
  39. Lambert, T.D., Malcolm, J.R., Zimmerman, B.L., 2006. Amazonian small mammal abundances in relation to habitat structure and resource abundance. J. Mammal. 87, 766–776.CrossRefGoogle Scholar
  40. Lanski, J., Heltai, M., 2010. Food preferences of golden jackals and sympatric red foxes in European temperate climate agricultural area (Hungary). Mammalia 74, 267–273.Google Scholar
  41. Loveridge, A.J., Macdonald, D.W., 2003. Niche separation in sympatric jackals (Canis mesomelas and Canis adustus). J. Zool. 259, 143–153.CrossRefGoogle Scholar
  42. Loveridge, A.J., Valeix, M., Davidson, Z., Murindagomo, F., Fritz, H., Macdonald, D.W., 2009. Changes in home range size of African lions in relation to pride size and prey biomass in a semi-arid savanna. Ecography 32, 953–962.Google Scholar
  43. MacKenzie, D.I., Nichols, J.D., Royle, JA, Pollock, K.H., Bailey, L.L., Hines, J.E., 2006. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence. Elsevier, San Diego.Google Scholar
  44. Mahmood, T., Hussain, I., Nadeem, M.S., 2011. Population estimates, habitat preference and the diet of small Indian mongoose (Herpestes javanicus) in Potohar Plateau, Pakistan. Pakistan J. Zool. 43, 103–111.Google Scholar
  45. Mahmood, T., Niazi, F., Nadeem, M.S., 2013. Diet composition of Asiatic jackal (Canis aureus) in Margallah Hills National Park, Islamabad, Pakistan. J. Anim. Plant Sci. 23, 444–456.Google Scholar
  46. Meredith, M., Ridout, M., 2017. Estimates of Coefficient of Overlapping for Animal Activity. patterns http://CRAN.R-project.org/package=overlap.Google Scholar
  47. Messier, F., 1985. Social organization, spatial distribution, and population density of wolves in relation to moose density. Can. J. Zool. 63, 1068–1077.CrossRefGoogle Scholar
  48. Mitchell, M.S., Powell, RA, 2004. A mechanistic home range model for optimal use of spatially distributed resources. Ecol. Model. 177, 209–232.CrossRefGoogle Scholar
  49. Morellet, N., Bonefant, C., Börger, L., Ossi, F., Cagnacci, F., Heurich, M., Kjellander, P., Linnell, J.D., Nicoloso, S., Sustr, P., Urbano, F., Mysterud, A., 2013. Seasonality, weather and climate affect home range size in roe deer across a wide latitudinal gradient within Europe. J. Anim. Ecol. 82, 1326–1339.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Morin, P.J., 1999. Community Ecology. Blackwell Science, Inc.Google Scholar
  51. Nakashima, Y., Nakabayashi, M., Sukor, JA, 2013. Space use, habitat selection, and day-beds of the common palm civet (Paradoxurus hermaphroditus) in human-modified habitats in Sabah, Borneo. J. Mammal. 94, 1169–1178.CrossRefGoogle Scholar
  52. O’Brien, T.G., Kinnaird, M.F., Wibisono, H.T., 2003. Crouching tigers, hidden prey: sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. 6, 131–139.CrossRefGoogle Scholar
  53. Oliver, K., Ngoprasert, D., Savini, T., 2019. Slow Lori’s density in a fragmented, disturbed dry forest, north-east Thailand. Am. J. Primatol., e22957, http://dx.doi.org/10.1002/ajp.22957.Google Scholar
  54. Ostfeld, R.S., Keesing, F., 2000. Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends Ecol. Evolut. 15, 232–237.CrossRefGoogle Scholar
  55. Otis, D.L., Burnham, K.P., White, G.C., Anderson, D.R., 1978. Statistical inference from capture data on closed animal populations. Wildl. Monogr. 62, 1–135.Google Scholar
  56. Packer, C., 1986. The ecology of sociality in felids. In: Rubenstein, D.I., Wrangham, R.W. (Eds.), Ecological Aspects of Social Evolution: Birds and Mammals. Princeton Univ. Press.Google Scholar
  57. Palomares, F., Caro, T.M., 1999. Interspecific killing among mammalian carnivores. Am. Nat. 153, 492–508.CrossRefGoogle Scholar
  58. Pimsai, U., Pearch, M.J., Satasook, C., Bumrungsri, S., Bates, P.J.J., 2014. Murine rodents (Rodentia: murinae) of the Myanmar-Thai-Malaysian peninsula and Singapore: taxonomy, distribution, ecology, conservation status, and illustrated identification keys. Bonn Zool. Bull. 63, 15–114.Google Scholar
  59. Pitman, R.T., Swanepoel, L.H., Hunter, L., Slotow, R., Balme, G.A., 2015. The importance of refugia, ecological traps, and scale for large carnivore management. Biodivers. Conserv. 24, 1975–1987.CrossRefGoogle Scholar
  60. R Development Core Team, 2016. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria http://www.R-project.org/.Google Scholar
  61. Rajaratnam, R., Sunquist, M., Rajaratnam, L, Ambu, L, 2007. Diet and habitat selection of the leopard cat (Prionailurus bengalensis borneoensis) in an agricultural landscape in Sabah, Malaysian Borneo. J. Trop. Ecol. 23, 209, http://dx.doi.org/10.1017/S0266467406003841.CrossRefGoogle Scholar
  62. Reed, S.E., Bidlack, A.L., Hurt, A., Getz, W.M., 2011. Detection distance and environmental factors in conservation detection dog surveys. J. Wildl. Manage. 75, 243–251.CrossRefGoogle Scholar
  63. Ridout, M.S., Linkie, M., 2009. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 14, 322–337.CrossRefGoogle Scholar
  64. Ripple, W.J., Estes, JA, Beschta, R.L., Wilmers, C.C., Ritchie, E.G., Hebblewhite, M., et al., 2014. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484.CrossRefGoogle Scholar
  65. Ritchie, E.G., Johnson, C.N., 2009. Predator interactions, mesopredator release and biodiversity conservation. Ecol. Lett. 12, 982–998.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Sˇálek, M., Kreisinger, J., Sedlácek, F., Albrecht, T., 2010. Do prey densities determine preferences of mammalian predators for habitat edges in an agricultural landscape? Landsc. Urban Plan. 98, 86–91.CrossRefGoogle Scholar
  67. Salo, P., Nordström, M., Thomson, R.L., Korpimäki, E., 2008. Risk induced by a native top predator reduces alien mink movements. J. Anim. Ecol. 77, 1092–1098.CrossRefGoogle Scholar
  68. Sarawee, A., Nakhon Ratchasima. Unpublished thesis 2008. Diet and Habitat Use of Viverrid Group at Sakaerat Environmental Research Station.Google Scholar
  69. Satgé, J., Teichman, K., Cristescu, B., 2017. Competition and coexistence in a small carnivore guild. Oecologia 184, 873–884.CrossRefGoogle Scholar
  70. Savini, T., Boesch, C., Reichard, U.H., 2008. Home-range characteristics and the influence of seasonality on female reproduction in white-handed gibbons (Hylobates lar)at Khao Yai National Park, Thailand. Am. J. Phys. Anthropol. 135, 1–12, http://dx.doi.org/10.1002/ajpa.20578.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Schuette, P., Wagner, A.P., Wagner, M.E., Creel, S., 2012. Occupancy patterns and niche partitioning within a diverse carnivore community exposed to anthropogenic pressures. Biol. Conserv. 158, 301–312.CrossRefGoogle Scholar
  72. Scognamillo, D., Maxit, I.E., Sunguist, M., Polisar, J., 2003. Coexistence of jaguar (Panthera onca) and puma (Puma concolor) in a mosaic landscape in the Venezuelan llanos. J. Zool. 259, 269–279.CrossRefGoogle Scholar
  73. Shehzad, W., Riaz, T., Nawaz, M.A., Miquel, C., Poillot, C., Shah, S.A., Taberlet, P., 2012. Carnivore diet analysis based on next-generation sequencing: application to the leopard cat (Prionailurus bengalensis) in Pakistan. Mol. Ecol., 1951–1965, http://dx.doi.org/10.1111/j.1365-294X.2011.05424.x.Google Scholar
  74. Shenkut, M., Mebrate, A., Balakrishnan, M., 2006. Distribution and abundance of rodents in farmlands: a case study in Alleltu Woreda, Ethiopia. Ethiop. J. Sci. 29, 63–70.Google Scholar
  75. Sodhi, N.S., Pin, L., Clements, R., Wanger, T.C., Hill, J.K., Hamer, K.C., Clough, Y., Tscharntke, T., Rose, M., Posa, C., Ming, T., 2010. Conserving Southeast Asian forest biodiversity in human-modified landscapes. Biol. Conserv. 143, 2375–2384, http://dx.doi.org/10.1016/j.biocon.2009.12.029.CrossRefGoogle Scholar
  76. Suwanrat, J., Artchawakom, T., Suwanwaree, P., 2011. Mammal Diversity Study Using Camera Trap at Sakaerat Environmental Research Station. Poster presented at the 32nd Thailand Wildlife Seminar, Bangkok, Thailand.Google Scholar
  77. Tabarelli, M., Silva, M.J.C., Gascon, C., 2004. Forest fragmentation, synergisms and the impoverishment of Neotropical forests. Biodivers. Conserv. 13, 1419–1425.CrossRefGoogle Scholar
  78. Tantipisanuh, N., Gale, G.A, 2013. Representation of threatened vertebrates by a protected area system in Southeast Asia: the importance of non-forest habitats. Raffles Bull. Zool. 61, 359–395.Google Scholar
  79. Terborgh, J., 1986. Keystone plant resources in the tropical forest. In: Soulé, M.E. (Ed.), Conservation Biology: The Science of Scarcity and Diversity. Sinauer Associates, Inc., pp. 330–344.Google Scholar
  80. Thompson, C.M., Gese, E.M., 2007. Food webs and intraguild predation: community interactions of a native mesocarnivore. Ecology 88, 334–346.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Veech, J.A., 2013. A probabilistic model for analysing species co-occurrence. Glob. Ecol. Biogeogr. 22, 252–260.CrossRefGoogle Scholar
  82. Viana, D.S., Granados, J.E., Fandos, P., Pérez, J.M., Cano-Manuel, F.J., Burón, D., Fandos, G., Aguado, M.A.P., Figuerola, J., Soriguer, R.C., 2018. Linking seasonal home range size with habitat selection and movement in a mountain ungulate. Mov. Ecol. 6, 1.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Vieira, E.M., Port, D., 2007. Niche overlap and resource partitioning between two sympatric fox species in southern Brazil. J. Zool. 272, 57–63.CrossRefGoogle Scholar
  84. Wang, H., Fuller, T.K., 2003. Food habits of foursympatric carnivores in southeastern China. Mammalia 67, 513–519.Google Scholar
  85. Wells, K., Kalko, E.K.V., Lakim, M.B., Pfeiffer, M., 2007. Effects of rain forest logging on species richness and assemblage composition of small mammals in Southeast Asia. J. Biogeogr. 34, 1087–1099.CrossRefGoogle Scholar
  86. White, T.C.R., 1978. The importance of a relative shortage of food in animal ecology. Oecologia 33, 71–86.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Wiens, J.A., 1993. Fat times, lean times and competition among predators. Trends Ecol. Evol. (Amst.) 8, 348–349.CrossRefGoogle Scholar
  88. Wolf, C., Ripple, W.J., 2016. Prey depletion as a threat to the world’s large carnivores. R. Soc. Open Sci. 3, 160252.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Woodroffe, R., Davies-Mostert, H., Ginsberg, J., Graf, J., Leigh, K., McCreery, K., et al., 2007. Rates and causes of mortality in Endangered African wild dogs Lycaon pictus: lessons for management and monitoring. Oryx 41, 215–223.CrossRefGoogle Scholar
  90. Wright, S.J., Duber, H.C., 2001. Poachers and forest fragmentation alter seed dispersal, seed survival, and seedling recruitment in the palm Attalea butryaceae, with implications for tropical tree diversity. Biotropica 33, 421–434.CrossRefGoogle Scholar
  91. Zhou, Y., Zhang, J., Slade, E., Zhang, L, Palomares, F., Chien, J., Wang, X., Zhang, S., 2008. Dietary shifts in relation to fruit availability among masked palm civets (Paguma lavarta) in central China. J. Mammal. 89, 435–447.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2019

Authors and Affiliations

  • Wyatt Joseph Petersen
    • 1
    Email author
  • Tommaso Savini
    • 1
  • Robert Steinmetz
    • 2
  • Dusit Ngoprasert
    • 1
  1. 1.Conservation Ecology ProgramKing Mongkut’s University of Technology ThonburiBangkokThailand
  2. 2.World Wide Fund for Nature - ThailandBangkokThailand

Personalised recommendations