Advertisement

Mammalian Biology

, Volume 94, Issue 1, pp 4–10 | Cite as

Quaternary range-shifts of arboreal rodents of the genus Habromys (Cricetidae, Neotominae) in Mesoamerica and their evolutionary consequences

  • Livia León-Paniagua
  • Lázaro GuevaraEmail author
Original investigation

Abstract

Arboreal mice of the genus Habromys (Cricetidae, Neotominae) comprise a clade of seven monotypic and endangered species that inhabit Mesoamerican cloud forests, one of the most threatened of the world’s ecosystems. Previous genetic analyses have suggested that closely related lineages are poorly differentiated, which is probably an evolutionary consequence of distributional shifts driven by Quaternary climate oscillations through a complex topography. Here, we assess the potential role of distributional shifts through time on current patterns of genetic differentiation in Habromys. Following recent best-practices recommendations for estimating ecological niches and paleodistributions for montane species, we estimated the potential distribution of the genus across the last glacial-interglacial cycle under three alternative Global Circulation Models to explore the more recent evolutionary history of this genus. Distributional shifts and population connectivity among populations of Habromys were greatly affected by past climate change coupled with topographic habitat heterogeneity. The effectiveness of some barriers to dispersal has changed over time as result of the climatic oscillations. Poorly differentiated genetic lineages might be an evolutionary consequence of intermittent connections and corridors for montane species motivated by glaciations. Some valleys and lowland habitats probably served as previously unrecognized barriers to dispersal during warmer periods. This study emphasizes the dynamic nature of species’ geographic distributions and potential barriers to create current patterns of genetic variation in Mesoamerican rodents.

Keywords

Climate change Cloud forests Crested tail mice Last glacial maximum Maxent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiello-Lammens, M.E., Boria, R.A., Radosavljevic, A., Vilela, B., Anderson, R.P., 2015. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545.Google Scholar
  2. Almendra, A.L., Rogers, D.S., González-Cózatl, F.X., 2014. Molecular phylogenetics of the Handleyomys chapmani complex in Mesoamerica. J. Mammal. 95, 26–40.Google Scholar
  3. Anderson, R.P., 2012. Harnessing the world’s biodiversity data: promise and peril in ecological niche modeling of species distributions. Ann. N. Y. Acad. Sci. 1260, 66–80.PubMedGoogle Scholar
  4. Arellano, E., González-Cozátl, F.X., Rogers, D.S., 2005. Molecular systematics of Middle American harvest mice Reithrodontomys (Muridae), estimated from mitochondrial cytochrome b gene sequences. Mol. Phylogenetics Evol. 37, 529–540.Google Scholar
  5. Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T., Soberón, J., Villalobos, F., 2011. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819.Google Scholar
  6. Bush, M.B., Correa-Metrio, A.Y., Hodell, D.A., Brenner, M., Anselmetti, F.S., Ariztegui, D., Mueller, A.D., Curtis, J.H., Grzesik, D.A., Burton, C., Gilli, A., 2009. Re-evaluation of climate change in lowland Central America during the Last Glacial Maximum using new sediment cores from Lake Petén Itzá, Guatemal. In: Vimeux, F., Sylvestre, F., Khodri, M. (Eds.), Past Climate Variability in South America and Surrounding Regions. Springer, Netherlands, pp. 113–128.Google Scholar
  7. Caballero, M., Lozano-Garría, S., Vázquez-Selem, L., Ortega, B., 2010. Evidencias de cambio climático y ambiental en registros glaciales yen cuencas lacustres del centra de Mexico durante el ultimo máximo glacial. Bol. Soc. Geol. Mex. 62, 359–377.Google Scholar
  8. Carleton, M.D., Sánchez, O., Urbano-Vidales, G., 2002. A new species of Habromys(Muroidea: Noetominae) from Mexico, with generic review of species definitions and remarks on diversity patterns among Mesoamerican small mammals restricted to humid montane forests. Proc. Biol. Soc. Wash. 115, 488–533.Google Scholar
  9. Carnaval, A.C., Hickerson, M.J., Haddad, C.F., Rodrigues, M.T., Moritz, C., 2009. Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323, 785–789.PubMedGoogle Scholar
  10. Castaneda-Rico, S., León-Paniagua, L., Ruedas, L.A., Vázquez-Domínguez, E., 2011. High genetic diversity and extreme differentiation in the two remaining populations of Habromys simulatus. J. Mammal. 92, 963–973.Google Scholar
  11. Chan, L.M., Brown, J.L., Yoder, A.D., 2011. Integrating statistical genetic and geospatial methods brings new power to phylogeography. Mol. Phylogenetics Evol. 59, 523–537.Google Scholar
  12. Collevatti, R.G., Terribile, L.C., Oliveira, G., Lima-Ribeiro, M.S., Nabout, J.C., Rangel, T.F., Diniz-Filho, J.A.F., 2013. Drawbacks to palaeodistribution modelling: the case of South American seasonally dry forests. J. Biogeogr. 40, 345–358.Google Scholar
  13. Collins, W.D., Bitz, C.M., Blackmon, M.X., Bonan, G.B., Bretherton, C.S., Carton, J.A., Chang, P., Doney, S.C., Hack, J.J., Henderson, T.B., Kiehl, J.T., Large, W.G., McKenna, D.S., Santer, B.D., Smith, R.D., 2006. The community climate system model version 3 (CCSM3). J. Clim. 19, 2122–2143.Google Scholar
  14. Correa-Metrio, A., Bush, M.B., Cabrera, K.R., Sully, S., Brenner, M., Hodell, D.A., Escobar, J., Guilderson, T., 2012. Rapid climate change and no-analog vegetation in lowland Central America during the last 86,000 years. Quat. Sci. Rev. 38, 63–75.Google Scholar
  15. Coyne, J.A., Orr, H.A., 2004. Speciation. Sinauer Associates, Sunderland, MA.Google Scholar
  16. Franklin, J., 2010. Mapping Species Distributions: Spatial Inference and Prediction. Cambridge University Press, United Kingdom.Google Scholar
  17. Fordham, D.A., Saltré, F., Haythorne, S., Wigley, T.M., Otto-Bliesner, B.L., Chan, K.C., Brook, B.W., 2017. PaleoView: atool for generating continuous climate projections spanning the last 21 000 years at regional and global scales. Ecography 40, 1348–1358.Google Scholar
  18. Foster, P., 2001. The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Sci. Rev. 55, 73–106.Google Scholar
  19. Gavin, D.G., Fitzpatrick, M.C., Gugger, P.F., Heath, K.D., Rodriguez-Sanchez, F., Dobrowski, S.Z., Hampe, A., Hu, F.S., Ashcroft, M.B., Bartlein, P.J., Blois, J.L., 2014. Climate réfugia: joint inference from fossil records, species distribution models and phylogeography. New Phytol. 204, 37–54.PubMedGoogle Scholar
  20. Giorgetta, M.A., Jungclaus, J., Reick, C.H., Legutke, S., Bader, J., Bóttinger, M., Glushak, I., 2013. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model Earth Syst. 5, 572–597.Google Scholar
  21. Guevara, L., Sánchez-Cordero, V., 2018. Patterns of morphological and ecological similarities of small-eared shrews (Soricidae, Cryptori’s) in tropical montane cloud forests from Mesoamerica. Syst. Biodivers.,  https://doi.org/10.1080/14772000.2018.1470582.Google Scholar
  22. Guevara, L., Gerstner, B.E., Kass, J.M., Anderson, R.P., 2018a. Toward ecologically realistic predictions of species distributions: a cross-time example from tropical montane cloud forests. Glob. Change Biol. 24, 1511–1522.Google Scholar
  23. Guevara, L., Morrone, J.J., León-Paniagua, L., 2018b. Spatial variability in species’ potential distributions during the Last Glacial Maximum under different Global Circulation Models: Relevance in evolutionary biology. J. Zool. Syst. Evol. Res.,  https://doi.org/10.1111/jzs.12238.Google Scholar
  24. Guralnick, R., 2007. Differential effects of past climate warming on mountain and flatland species distributions: a multispecies North American mammal assessment. Glob. Ecol. Biogeogr. 16, 141–223.Google Scholar
  25. Hasumi, H., Emori, S., 2004. K-l Coupled GCM (MIROC) Description. Tokyo: Center for Climate System Research, University of Tokyo, Japan.Google Scholar
  26. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978.Google Scholar
  27. Kerhoulas, N.J., Arbogast, B.S., 2010. Molecular systematics and Pleistocene biogeography of Mesoamerican flying squirrels. J. Mammal. 91, 654–667.Google Scholar
  28. León-Paniagua, L., Navarro-Sigúenza, A.G., Hernandez, B., Morales, J.C., 2007. Diversification of arboreal mice of genus Habromys (Rodentia: Cricetidae: Neotominae). Mol. Phylogenetics Evol. 62, 653–664.Google Scholar
  29. Merow, C., Smith, M.J., Silander, J.A., 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069.Google Scholar
  30. Muscarella, R., Galante, P.J., Soley-Guardia, M., Boria, R.A., Kass, J.M., Uriarte, M., Anderson, R.P., 2014. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MAXENT ecological niche models. Methods Ecol. Evol. 5, 1198–1205.Google Scholar
  31. Nogués-Bravo, D., 2009. Predicting the past distribution of species climatic niches. Glob. Ecol. Biogeogr. 18, 521–531.Google Scholar
  32. Peterson, A.T., Lieberman, B.S., 2012. Species’ geographic distributions through time: playing catch-up with changing climates. Evol. Educ. Outreach. 5, 569–581.Google Scholar
  33. Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259.Google Scholar
  34. Qiao, H., Peterson, A.T., Ji, L., Hu, J., 2017. Using data from related species to overcome spatial sampling bias and associated limitations in ecological niche modeling. Methods Ecol. Evol. 8, 1804–1812.Google Scholar
  35. Raxworthy, C.J., Martinez-Meyer, E., Horning, N., Nussbaum, R.A., Schneider, G.E., Ortega-Huerta, M.A., Peterson, A.T., 2003. Predicting distributions of known and unknown reptile species in Madagascar. Nature 426, 837–841.PubMedGoogle Scholar
  36. Richards, C.L., Carstens, B.C., Knowles, L.L., 2007. Distribution modelling and statistical phylogeography: an integrative framework for generating and testing alternative biogeographical hypotheses. J. Biogeogr. 34, 1833–1845.Google Scholar
  37. Rogers, D.S., Funk, C.C., Miller, J.R., Engstrom, M.D., 2007. Molecular phylogenetic relationships among crested-tailed mice (Genus Habromys). J. Mamm. Evol. 14, 37–55.Google Scholar
  38. Vallejo, R.M., González-Cózatl, F.X., 2012. Phylogenetic affinities and species limits within the genus Megadontomys (Rodentia: Cricetidae) based on mitochondrial sequence data. J. Zool. Syst. Evol. Res. 50, 67–75.Google Scholar
  39. Varela, S., Lobo, J.M., Hortal, J., 2011. Using species distribution models in paleobiogeography: a matter of data, predictors and concepts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 310, 451–463.Google Scholar
  40. Waltari, E., Hijmans, R.J., Peterson, A.T., Nyári, Á.S., Perkins, S.L., Guralnick, R.P., 2007. Locating Pleistocene réfugia: comparing phylogeographic and ecological niche model predictions. PLoS One 2, e563.PubMedPubMedCentralGoogle Scholar
  41. Warren, D.L., Seifert, S.N., 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342.PubMedGoogle Scholar
  42. Woodman, N., Matson, J.O., McCarthy, T.J., Eckerlin, R.P., Bulmer, W., Ordóñez-Garza, N., 2012. Distributional records of shrews (Mammalia, Soricomorpha, Soricidae) from Northern Central America with the first record of Sorex from Honduras. Ann. Carnegie Mus. 80, 207–237.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2019

Authors and Affiliations

  1. 1.Museo de Zoología “Alfonso L Herrera”, Facultad de CienciasUniversidad National Autónoma de MéxicoMexico CityMexico

Personalised recommendations