Mammalian Biology

, Volume 93, Issue 1, pp 118–123 | Cite as

Seasonal intake responses could reflect digestive plasticity in the nectar-feeding bat Anoura geoffroyi

  • Jorge Ayala-BerdonEmail author
  • Cesar García Corona
  • Margarita Martínez-Gómez
Original investigation


Many studies have used intake response as a tool for understanding digestive capacities of bats to process nectar. Nevertheless, most of them have been done so in one season, assuming that this response does not change over the year. One study performed with Glossophaga soricina, a bat inhabiting warm environments, found different intake response over seasons, but these changes are unknown for other bat species; especially those inhabiting cold climates. We measured changes in volumetric intake of Anoura geoffroyi (found in places above 2, 500 m a.s.l.) feeding on sucrose concentrations ranging from 5 to 35% (wt./vol.) in spring and compared the results with those previously published for winter. Because of differences in ambient temperature and nectar availability in the places they inhabit, we predicted different intake responses among seasons. We found differences in intake responses between winter and spring. Constant energy intake in winter was 101.07 ± 5.4 kJ, and decreased from 23 to 37% in spring. Body mass gain in winter was 1.31 ± 0.1 g, and was reduced from 56 to 74% in spring, when bats fed on sugar concentrations of 15 and 5%. Seasonal differences in intake responses and body mass changes provide evidence of digestive plasticity, which may have important ecological implications for bats. Species able to change their digestive traits would have the capacity to change their food intake depending on the energy demands imposed by their environment, while those with low plasticity should change their behavioral and energy-saving strategies when confronting changes in the abundance or the nutritional quality of the nectar they consume.


Anoura geoffroyi Digestive plasticity Intake response Nectar-feeding bats Seasonality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Audet, D., Fenton, M.B., 1988. Heterothermy and the use of torpor by the bat Eptesicus fuscus (Chiroptera: Vespertilionidae): a field study. Physiol. Zool. 61, 197–204.Google Scholar
  2. Ayala-Berdon, J., Schondube, J.E., 2011. A physiological perspective on nectar-feeding adaptation in phyllostomid bats. Physiol. Biochem. Zool. 84, 458–466.PubMedGoogle Scholar
  3. Ayala-Berdon, J., Schondube, J.E., Stoner, K.E., Rodriguez-Pena, N., Martínez Del Rio, C., 2008. The intake responses of three species of leaf-nosed Neotropical bats. J. Comp. Physiol. B 178, 477–485.PubMedGoogle Scholar
  4. Ayala-Berdon, J., Schondube, J.E., Stoner, K.E., 2009. Seasonal intake responses in the nectar-feeding bat Glossophaga soricina. J. Comp. Physiol. B 179, 553–562.PubMedGoogle Scholar
  5. Ayala-Berdon, J., Rodríguez-Pena, N., Orduña-Villaseñor, M., Stoner, K.E., Kelm, D.H., Schondube, J.E., 2011. Foraging behavior adjustments related to changes in nectar sugar concentration in phyllostomid bats. Comp. Biochem. Physiol. A 160, 143–148.Google Scholar
  6. Ayala-Berdon, J., Galicia, R., Flores-Ortíz, C., Medellín, R.A., Schondube, J.E., 2013. Digestive capacities allow the Mexican long-nosed bat (Leptonycteris nivalis) to live in cold environments. Comp. Biochem. Physiol. A 164, 622–628.Google Scholar
  7. Ayala-Berdon, J., Vázquez-Fuerte, R., Beamonte-Barrientos, R., Schondube, J.E., 2017. Effect of diet quality and ambient temperature on the use of torpor by two species of neotropical nectar-feeding bats. J. Exp. Biol. 220, 920–929.PubMedGoogle Scholar
  8. Baker, H.G., Baker, I., Hodges, S.A., 1998. Sugar composition of nectars and fruits consumed by birds and bats in the Tropics and subtropics. Biotropica 30, 559–586.Google Scholar
  9. Caballero-Martínez, L.A., 2008. Hábitos alimentarios de Anoura geoffroyi (Chiroptera: Phyllostomidae) en Ixtapan del Oro, Estado de México. Acta Zool. Mex. 25, 161–175.Google Scholar
  10. Castle, K.T., Wunder, B.A., 1995. Limits to food intake and fiber utilization in the prairie vole, Microtus ochrogaster: effects of food quality and energy need. J. Comp. Physiol. B 164, 609–617.Google Scholar
  11. R. Core Team, 2014. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  12. Cruzblanca-Castro, M., Martínez-Gómez, M., Ayala-Berdon, J., 2018. Food processing does not affect energy intake in the nectar-feeding bat Anoura geoffroyi. Mamm. Biol. 88, 176–179.Google Scholar
  13. Fleming, T.H., Nunez, R.A., Sternberg, L.D.S.L., 1993. Seasonal changes in the diets of migrant and non-migrant nectarivorous bats as revealed by carbon stable isotope analysis. Oecologia 94, 72–75.PubMedGoogle Scholar
  14. Galluser, M., Raul, F., Canguilhem, B., 1988. Adaptation of intestinal enzymes to seasonal and dietary changes in a hibernator: the European hamster (Cricetus cricetus). J. Comp. Physiol. B 158, 143–149.PubMedGoogle Scholar
  15. Grinevitch, L., Holroyd, S.L., Barclay, R.M.R., 1994. Sex differences in the use of daily torpor and foraging time by big brown bats (Eptesicus fuscus) during the reproductive season. J. Zool. 235, 301–309.Google Scholar
  16. Heithaus, E.R., Fleming, T.H., Opler, P.A., 1975. Foraging patterns and resource utilization in seven species of bats in a seasonal tropical forest. Ecology 56, 841–854.Google Scholar
  17. Herrera, M.L.G., Mancina, C.A., 2008. Sucrose hydrolysis does not limit food intake by Pallas’s long-tongued bats. Physiol. Biochem. Zool. 81, 119–124.Google Scholar
  18. Herrera, M.L.G., Hobson, K.A., Manzo, A.A., Estrada, B.D., Sánchez-Cordero, V., Méndez, C.G., 2001. The role of fruits and insects in the nutrition of frugivorous bats: evaluating the use of stable isotope models. Biotropica 33, 520–528.Google Scholar
  19. Judkin, J., Edelman, J., Hough, L., 1971. Chemical, Biological and Nutritional Aspects of Sucrose. Butterworth Group, London, UK.Google Scholar
  20. Karasov, D.H., Afik, D., Darken, B.W., 1996. Do Northern Bobwhite quail modulate intestinal nutrient absorption in response to dietary change? A test of an adaptational hypothesis. Comp. Biochem. Physiol. 113, 233–238.Google Scholar
  21. Kelm, D.H., Schaer, J., Ortmann, S., Wibbelt, G., Speakman, J.R., Voigt, C.C., 2008. Efficiency of facultative frugivory in the nectar-feeding bat Glossophaga commissarisi: the quality of fruits as an alternative food source. J. Comp. Physiol. B 178, 985–996.PubMedGoogle Scholar
  22. Kirk, R.E., 1982. Experimental Design: Procedures for the Behavioral Sciences. Brooks/Cole Publishing Company, Belmont, California.Google Scholar
  23. Levey, D.J., Martínez del Rio, C., 1999. Test, rejection, and reformulation of a chemical reactor-based model of gut function in a fruit-eating bird. Physiol. Biochem. Zool. 72, 369–383.PubMedGoogle Scholar
  24. Martínez del Rio, C., Schondube, J.E., McWhorter, T.J., Herrera, L.G., 2001. Intake responses in nectar feeding birds: digestive and metabolic causes, osmoregulatory consequences, and coevolutionary effects. Am. Zool. 41, 902–915.Google Scholar
  25. Martinez del Rio, C., Stevens, B.R., 1988. Intestinal brush border membrane-bound disaccharidases of the American Alligator, Alligator mississippiensis. Comp. Biochem. Physiol. B 91, 751–754.PubMedGoogle Scholar
  26. McNab, B.K., 1969. The economics of temperature regulation in neotropical bats. Comp. Biochem. Physiol. 31, 227–268.PubMedGoogle Scholar
  27. McWhorter, T.J., Martínez del Rio, C., 2000. Does gut function limit hummingbird food intake? Physiol. Biochem. Zool. 73, 313–324.Google Scholar
  28. Mendieta, J., Bachelor thesis 2011. Recursos florales de interes alimenticio en dos especies de murcielagos Glossophaginae. Universidad Autonoma de Tlaxcala, Mexico.Google Scholar
  29. Moss, R., 1972. Effects of captivity on gut lengths in red grouse. J. Wildl. Manag. 36, 99–104.Google Scholar
  30. Munin, R.L., Fischer, E., Goncalves, F., 2012. Food habits and dietary overlap in a phyllostomid bat assemblage in the Pantanal of Brazil. Acta Chiropt. 14, 195–204.Google Scholar
  31. Nicolson, S.W., Thornburg, R.W., 2007. Nectar chemistry. In: Nicolson, S.W., Nepi, M., Pacini, E. (Eds.), Nectaries and Nectar. Springer, Netherlands, pp. 215–264.Google Scholar
  32. Ramírez, N., Herrera, M.L.G., Mirón, M.L., 2005. Physiological constraint to food ingestion in a New World nectarivorous bat. Physiol. Biochem. Zool. 78, 1032–1038.PubMedGoogle Scholar
  33. Ramirez-Pulido, J., Galindo-Galindo, C., Castro-Campillo, A., Salame-Mendez, A., Armella, M.A., 2001. Colony size fluctuation in Anoura geoffroyi and temperature characterization in a Mexican cave. Southwest. Nat. 46, 358–409.Google Scholar
  34. Reid, F.A., 1997. A Field Guide of Mammals of Central America and Southeast Mexico. New York Oxford University Press, USA.Google Scholar
  35. Rodriguez-Peña, N., Stoner, K.E., Schondube, J.E., Ayala-Berdon, J., Flores-Ortiz, C.M., Martinez del Rio, C.M., 2007. Effects of sugar composition and concentration on food selection by Saussures long-nosed bat (Leptonycteris curasoae) and long-tongued bat (Glossophaga soricina). J. Mamm. 88, 1466–1474.Google Scholar
  36. Rodriguez-Peña, N., Stoner, K.E., Flores-Ortiz, C.M., Ayala-Berdon, J., Munguia-Rosas, M.A., Sanchez-Cordero, V., Schondube, J.E., 2016. Factors affecting nectar sugar composition in chiropterophilic plants. Rev. Mex. Biodivers. 87, 465–473.Google Scholar
  37. Ruf, T., Geiser, F., 2015. Daily torpor and hibernation in birds and mammals. Biol. Rev. 90, 891–926.PubMedGoogle Scholar
  38. Sabat, P., Bozinovic, F., 1994. Cambios estacionales en la actividad de enzimas digestivas en el pequeño marsupial chileno Thylamys elegans: disacaridasas intestinales. Rev. Chil. Hist. Nat. 67, 221–228.Google Scholar
  39. Sazima, I., 1976. Observations on the feeding habits of phyllostomatid bats (Carollia, Anoura, and Vampyrops) in southeastern Brazil. J. Mammal. 57, 381–382.Google Scholar
  40. Schondube, J.E., Herrera-M, L.G., Martínez del Rio, C.M., 2001. Diet and the evolution of digestion and renal function in phyllostomid bats. Zoology 104, 59–73.PubMedGoogle Scholar
  41. Sestoft, L., 1983. Fructose and health. In: Weininger, J., Briggs, G.M. (Eds.), Nutrition Update. John Wiley and Sons, New York, pp. 39–54.Google Scholar
  42. Slansky, F., Wheeler, G.S., 1992. Caterpillars’ compensatory feeding response to diluted nutrients leads to toxic allelochemical dose. Entomol. Exp. Appl. 65, 171–186.Google Scholar
  43. Sperr, E.B., Caballero-Martínez, L.A., Medellin, R.A., Tschapka, M., 2011. Seasonal changes in species composition, resource use and reproductive patterns within a guild of nectar-feeding bats in a west Mexican dry forest. J. Trop. Ecol. 27, 133–145.Google Scholar
  44. Sunshine, P., Kretchmer, N., 1964. Intestinal disaccharidases: absence in two species of sea lions. Science 144, 850–851.PubMedGoogle Scholar
  45. von Helversen, O., Winter, Y., 2003. Glossophagine bats and their flowers: cost and benefit for flower and pollinator. In: Kunz, T.H., Fenton, M.B. (Eds.), Bat Ecology. University of Chicago Press, Chicago, Illinois, pp. 346–397.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2018

Authors and Affiliations

  • Jorge Ayala-Berdon
    • 1
    Email author
  • Cesar García Corona
    • 2
  • Margarita Martínez-Gómez
    • 3
    • 4
  1. 1.CONACYTUniversidad Autónoma de TlaxcalaTlaxcala de XicohténcaltMexico
  2. 2.Facultad de AgrobiologíaUniversidad Autónoma de TlaxcalaIxtacuixtlaMexico
  3. 3.Universidad Autónoma de TlaxcalaTlaxcala de XicohténcaltMexico
  4. 4.Departamento de Biol. Celular y FisiologíaUniversidad Nacional Autónoma de MéxicoTlaxcala de XicohténcatlMexico

Personalised recommendations