Advertisement

Mammalian Biology

, Volume 95, Issue 1, pp 127–134 | Cite as

Marked reduction in body size of a wood mouse population in less than 30 years

  • María Docampo
  • Sacramento Moreno
  • Simone SantoroEmail author
Original investigation

Abstract

Thermoregulation, metabolism and life history of species are affected by body size and shape. Based on specimens of the wood mouse Apodemus sylvaticus that were collected at Doñana National Park in 1978-81 and 2006-07, we tested for changes between these periods in body mass, body size, and allometry. Furthermore, we used data from 1978-81, when more specimens were available, to evaluate the sexual dimorphism of adults. Between the two periods and regardless of age, the most striking reduction in size in both females and males concerned body mass (females −29.5%, males −36%) and ear length (−20% for both sexes). Although less pronounced (3–4%), we also found a significant reduction in the total cranial and the condyle-basal lengths of females but not of males. No change was evident for the zygomatic width and the diastema length and for the head-body and hind foot lengths in either sex. The allometric relationships between the measured traits and the head-body length in adults did not change between the two periods. Males were larger than females in all the measured traits except the zygomatic width and the ear length. No sexual dimorphism was evident relative to the static allometry of adults. We speculate that a major determinant of this reduction may have been a shortage in suitable resources. Overall, this study confirms and extends previous findings on male-biased sexual size dimorphism and reveals a dramatic decline in body mass, which is likely linked to the observed reduction in species abundance at Doñana. The extent and rapidity of the observed morphological changes raise concerns about the conservation of Doñana ecosystems and pose questions for future research on the ecological processes that caused these changes.

Keywords

Apodemus sylvaticus European wood mouse Doñana National Park Allometry Sexual dimorphism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcántara, M., 1991. Geographical variation in body size of the Wood Mouse Apodemus sylvaticus L. Mamm. Rev. 21, 143–150.CrossRefGoogle Scholar
  2. Alcántara, M., Díaz, M., 1996. Patterns of body weight, body size, and body condition in the wood mouse Apodemus sylvaticus L: effects of sex and habitat quality. Eur. Congr. Mammal., 141–149.Google Scholar
  3. Bates, D., Maechler, M., Bolker, B.M., Walker, S., 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67 (1), 1–48.CrossRefGoogle Scholar
  4. Bauduin, S., Cassaing, J., Issam, M., Martin, C., 2013. Interaction between the short-tailed mouse (Mus spretus) and the wood mouse (Apodemus sylvaticus): diet overlap revealed by stable isotopes. Can. J. Zool. 91, 102–109.CrossRefGoogle Scholar
  5. Bogdziewicz, M., Fernández-Martínez, M., Bonal, R., Belmonte, J., Espelta, J.M., 2017. The Moran effect and environmental vetoes: phenological synchrony and drought drive seed production in a Mediterranean oak. Dokl. Biol. Sci. 284, 20171784.CrossRefGoogle Scholar
  6. Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H.H., White, J.S.S., 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135.CrossRefGoogle Scholar
  7. Calder, W.A., 1984. Size, Function, and Life History, III Ed. Mineola, New York.Google Scholar
  8. Camacho, J., Moreno, S., 1989. Datos sobre la distribución espacial de micromamíferos en el Parque Nacional de Don˜ana. Don˜ana Acta Vertebr. 16, 239–245.Google Scholar
  9. Cassaing, J., Le Proux De La Riviere, B., De Donno, F., Marlinez-Garcia, E., Thomas, C., 2013. Interactions between 2 Mediterranean rodent Species: habitat Overlap and use of heterospecific Cues. Ecoscience 20, 137–147.CrossRefGoogle Scholar
  10. Delibes, M., Ferreras, P., Travaini, A., Laffite, R., 1992. Evolución de las poblaciones de carnívoros del Parque Nacional de Donana. In: Informe Final. Estación Biológica de Donana, Sevilla (Spain).Google Scholar
  11. Díaz, M., Torre, I., Arrizabalaga, A., 2010. Relative roles of density and rainfall on the short-term regulation of Mediterranean wood mouse Apodemus sylvaticus populations. Acta Theriol. (Warsz) 55, 251–260.CrossRefGoogle Scholar
  12. Docampo, M., Moreno, S., Santoro, S., 2018. Wood mouse body size measurements in a Spanish protected area over two periods spanning thirty years. Mamm. Biol., Data in brief.Google Scholar
  13. Fedriani, J.M., Ferreras, P., Delibes, M., 1998. Dietary response ofthe Eurasian badger, Meles meles, to a decline of its main prey in the Donana National Park. J. Zool. 245, 214–218.Google Scholar
  14. Felten, H., 1952. Untersuchungen zur Ökologie und morphologie derWaldmaus (Apodemus sylvaticus L.) und der Gelbhalsmaus (Apodemus flavicollis Melchior) im Rhein-Main-Gebiet. Bonner Zool. Beiträge 3, 187–206.Google Scholar
  15. Ferrer, M., Negro, J.J., 2004. The near extinction of two large European predators: super specialists pay a price. Conserv. Biol. 18, 344–349.CrossRefGoogle Scholar
  16. Ferreras, P., Travaini, A., Cristina Zapata, S., Delibes, M., 2011. Short-term responses of mammalian carnivores to a sudden collapse of rabbits in Mediterranean Spain. Basic Appl. Ecol. 12, 116–124.CrossRefGoogle Scholar
  17. García, L.V., Ramo, C., Aponte, C., Moreno, A., Domínguez, M.T., Gómez-Aparicio, L, Redondo, R., Maran˜ón, T., 2011. Protected wading bird species threaten relict centenarian cork oaks in a Mediterranean Biosphere Reserve: a conservation management conflict. Biol. Conserv. 144, 764–771.CrossRefGoogle Scholar
  18. Gardner, J.L., Peters, A., Kearney, M.R., Joseph, L., Heinsohn, R., 2011. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291.CrossRefGoogle Scholar
  19. Gil-Sánchez, J.M., McCain, E.B., 2011. Former range and decline ofthe Iberian lynx (Lynx pardinus) reconstructed using verified records. J. Mammal. 92, 1081–1090.CrossRefGoogle Scholar
  20. Gosler, A.G., Greenwood, J.J.D., Perrins, C., 1995. Predation risk and the cost of being fat. Nature 377, 621–623.CrossRefGoogle Scholar
  21. Holm, S., 1979. A simple sequentially rejective multiple test procedure. Scand. J. Stat, 65–70.Google Scholar
  22. Huxley, J.S., 1932. Problems of Relative Growth. Johns Hopkins University Press, Baltimore.Google Scholar
  23. Jubete, F., 2007. Apodemus sylvaticus (Linnaeus, 1758). In: Atlas Y Libro Rojo de Los Mamiferos Terrestres de Espana. Dirección General Para La Biodiversidad-SECEM-SECEMU, Madrid, Spain.Google Scholar
  24. Klingenberg, C.P., 2016. Size, shape, and form: concepts of allometry in geometric morphometrics. Dev. Genes Evol. 226, 113–137.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kufner, M.B., 1986. Tamaño, actividad densidad relativay preferenciade habitat de los pequeños y medianos mamíferos de Doñana, como factores condicionantes de su tasa de predación. Tesis Doctoral. Universidad Autonoma de Madrid.Google Scholar
  26. Lomolino, M.V., Perault, D.R., 2007. Body size variation of mammals in a fragmented, temperate rainforest. Conserv. Biol. 21, 1059–1069.CrossRefGoogle Scholar
  27. McNab, B.K., 2010. Geographic and temporal correlations of mammalian size reconsidered: a resource rule. Oecologia 164, 13–23.CrossRefGoogle Scholar
  28. Millien, V., Kathleen Lyons, S., Olson, L., Smith, F.A., Wilson, A.B., Yom-Tov, Y., 2006. Ecotypic variation in the context of global climate change: revisiting the rules. Ecol. Lett. 9, 853–869.CrossRefGoogle Scholar
  29. Monarca, R.I., Mathias, M., da, L., Speakman, J.R., 2015. Behavioural and physiological responses of wood mice (Apodemus sylvaticus) to experimental manipulations of predation and starvation risk. Physiol. Behav. 149, 331–339.CrossRefGoogle Scholar
  30. Montgomery, W.I., 1989. Peromyscus and Apodemus: patterns of similarity in ecological equivalents. In: Kirkland, G.L.J., Layne, J.N. (Eds.), Advances in the Study of Peromyscus (Rodentia). Texas Tech University Press, Lubbock, pp. 293–366.Google Scholar
  31. Moreno, S., Beltrán, J.F., Cotilla, I., Kuffner, B., Laffite, R., Jordán, G., Ayala, J., Quintero, C., Jiménez, A., Castro, F., Cabezas, S., Villafuerte, R., 2007. Long-term decline of the European wild rabbit (Oryctolagus cuniculus) in south-western Spain. Wildl. Res. 34, 652.CrossRefGoogle Scholar
  32. Moreno, S., Palomo, L.J., Fernández, M.C., Sánchez-Suárez, C., Santoro, S., 2016. Pérdida de diversidad en la comunidad de micromamíferos del Parque Nacional de Doñana durante las últimas cuatro décadas. Galemys. Spanish J. Mammal. 28, 31–39.Google Scholar
  33. Munoz-Reinoso, J.C, 2001. Vegetation changes and groundwater abstraction in SW Doñana. Spain. J. Hydrol. 242, 197–209.CrossRefGoogle Scholar
  34. Ozgul, A., Childs, D.Z., Oli, M.K., Armitage, K.B., Blumstein, D.T., Olson, LE., Tuljapurkar, S., Coulson, T., 2010. Coupled dynamics of body mass and population growth in response to environmental change. Nature 466, 482–485.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Palomares, F., Ferreras, P., Fedriani, J.M., Delibes, M., 1996. Spatial relationships between Iberian lynx and other carnivores in an area of south-western Spain. J. Appl. Ecol. 33, 5–13.CrossRefGoogle Scholar
  36. Pertoldi, C., García-Perea, R., Godoy, J.A., Delibes, M., Loeschcke, V., 2005. Morphological consequences of range fragmentation and population decline on the endangered Iberian lynx (Lynx pardinus). J. Zool. 268, 73–86.CrossRefGoogle Scholar
  37. Rendón, M.A., Green, A.J., Aguilera, E., Almaraz, P., 2008. Status, distribution and long-term changes in the waterbird community wintering in Don˜ana, south-west Spain. Biol. Conserv. 141, 1371–1388.CrossRefGoogle Scholar
  38. Rosário, I.T., Mathias, M.L., 2004. Annual weight variation and reproductive cycle of the wood mouse (Apodemus sylvaticus) in a Mediterranean environment. Mammalia 68, 133–140.CrossRefGoogle Scholar
  39. RStudioTeam, 2017. RStudio: Integrated Development Environment forR. RStudio, Inc, 2015.Google Scholar
  40. Santoro, S., Sanchez-Suarez, C., Rouco, C., Palomo, L.J.J., Fernández, M.C.C., Kufner, M.B.M.B., Moreno, S., 2016. Long-term data from a small mammal community reveals loss of diversity and potential effects of local climate change. Curr. Zool. 63 (5), 515–523.PubMedPubMedCentralGoogle Scholar
  41. Sara, M., Casamento, G., 1995. Morphometrics of the wood mouse (Apodemus-sylvaticus, Mammalia, Rodentia) in the Mediterranean. Boll. Di Zool. 62, 313–320.CrossRefGoogle Scholar
  42. Sheridan, J.A, Bickford, D., 2011. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406.CrossRefGoogle Scholar
  43. Teplitsky, C., Millien, V., 2014. Climate warming and Bergmann’s rule through time: is there any evidence? Evol. Appl. 7, 156–168.CrossRefGoogle Scholar
  44. Ueda, H., Takatsuki, S., 2005. Sexual dimorphism of Apodemus speciosus in wild populations. Mammal Study 30, 65–68.CrossRefGoogle Scholar
  45. Valverde, J.A., 1958. An ecological sketch of the Coto Donana. Br. Birds 51, 1–23.Google Scholar
  46. Valverde, J.A., 1967. Estructura de una comunidad mediterránea de vertebrados terrestres, second. ed, Madrid.Google Scholar
  47. Villafuerte, R., Calvete, C., Gortázar, C., Moreno, S., 1994. First epizootic of rabbit hemorrhagic disease in free living populations of Oryctolagus cuniculus at Doñana National Park, Spain. J. Wildl. Dis. 30, 176–179.CrossRefGoogle Scholar
  48. Warton, D.I., Duursma, RA, Falster, D.S., Taskinen, S., 2012. Smatr3- an R package for estimation and inference about allometric lines. Methods Ecol. Evol. 3, 257–259.CrossRefGoogle Scholar
  49. White, T.C.R., 2008. The role of food, weather and climate in limiting the abundance of animals. Biol. Rev. 83, 227–248.CrossRefGoogle Scholar
  50. Yom-Tov, Y., 2001. Global warming and body mass decline in Israeli passerine birds. Proc. R. Soc. B Biol. Sci. 268, 947–952.CrossRefGoogle Scholar
  51. Yom-Tov, Y., Geffen, E., 2011. Recent spatial and temporal changes in body size of terrestrial vertebrates: probable causes and pitfalls. Biol. Rev. 86, 531–541.CrossRefGoogle Scholar
  52. Yom-Tov, Y., Yom-Tov, S., 2004. Climatic change and body size in two species of Japanese rodents. Biol. J. Linn. Soc. 82, 263–267.CrossRefGoogle Scholar
  53. Yom-Tov, Y., Yom-Tov, J., 2005. Global warming, Bergmann’s rule and body size in the masked shrew Sorex cinereus Kerr in Alaska. J. Anim. Ecol. 74, 803–808.CrossRefGoogle Scholar
  54. Yom-Tov, Y., Yom-Tov, S., 2012. Observations on variation in skull size of three mammals in Israel during the 20th century. Zool. Anzeiger A J. Comp. Zool 251, 331–334.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2019

Authors and Affiliations

  • María Docampo
    • 1
  • Sacramento Moreno
    • 1
  • Simone Santoro
    • 2
    Email author
  1. 1.Ethology and Biodiversity Conservation DepartmentDoñana Biological Station-CSICSevilleSpain
  2. 2.Department of Molecular Biology and Biochemical EngineeringUniversity Pablo de OlavideSevillaSpain

Personalised recommendations