Advertisement

Mammalian Biology

, Volume 93, Issue 1, pp 64–75 | Cite as

Landscape heterogeneity and ecological niche isolation shape the distribution of spatial genetic variation in Iranian brown bears, Ursus arctos (Carnivora: Ursidae)

  • Mohammad-Reza Ashrafzadeh
  • Rasoul Khosravi
  • Mohsen Ahmadi
  • Mohammad KaboliEmail author
Original investigation

Abstract

The formerly large continuous range of brown bears in Iran has become confined to fragmented patches due to habitat conversion. Little is known about population genetic diversity, spatial genetic structure, and the consequences of geographic and ecological isolation on spatial genetic variations in Iranian bears. Literature is generally sparse on the effects of isolation by distance (IBD), isolation by resistance (IBR), isolation by environment (IBE), and ecological niche isolation on genetic differentiations of large-bodied carnivores. In this study, we investigated population structure, landscape connectivity, and genetic variations of Iranian brown bear populations using microsatellites. We tested the effects of IBD, IBR, and IBE on the genetic structure using multiple matrix randomized regression (MMRR) in an individual-based approach. A population level method based on an ecological niche modelling (ENM) framework was then used to evaluate the effect of niche divergence on genetic patterns. Bear populations displayed high genetic diversity, among the highest reported for wild brown bears. We also found a relatively significant division of brown bear populations, as well as higher effect of IBR than IBD and IBE, demonstrating the influence of landscape resistance in shaping spatial genetic variations. The results of niche comparisons among brown bear groups showed low niche overlap, and a probable phylogenetic conservatism event. We concluded that a combination of landscape resistance, ecological niche divergence, and probably mate-based dispersal behavior are affecting the gene flow of bear populations. Conservation planning of this vulnerable species should include landscape linkages to maintain gene flow among the isolated populations.

Keywords

Ecological isolation Isolation by environment Isolation by resistance Landscape genetics Niche similarity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashrafzadeh, M.R., Kaboli, M., Naghavi, M.R., 2016. Mitochondrial DNA analysis of Iranian brown bears (Ursus arctos) reveals new phylogeographic lineage. Mamm. Biol.-Z. Sáugetierkunde 81, 1–9.CrossRefGoogle Scholar
  2. Balkenhol, N., Cushman, S., Storfer, A., Waits, L., 2016. Landscape Genetics: Concepts, Methods, Applications. John Wiley & Sons.Google Scholar
  3. Bellemain, E., Taberlet, P., 2004. Improved noninvasive genotyping method: application to brown bear (Ursus arctos) faeces. Mol. Ecol. Resour. 4, 519–522.CrossRefGoogle Scholar
  4. Broennimann, O., Fitzpatrick, M.C., Pearman, P.B., Petitpierre, B., Pellissier, L., Yoccoz, N.G., Thuiller, W., Fortin, M.J., Randin, C., Zimmermann, N.E., 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497.CrossRefGoogle Scholar
  5. Calvignac, S., Hughes, S., Tougard, C., Michaux, J., Thevenot, M., Philippe, M., Hamdine, W., Hánni, C., 2008. Ancient DNA evidence for the loss of a highly divergent brown bear clade during historical times. Mol. Ecol. 17, 1962–1970.CrossRefGoogle Scholar
  6. Calvignac, S., Hughes, S., Hánni, C., 2009. Genetic diversity of endangered brown bear (Ursus arctos) populations at the crossroads of Europe, Asia and Africa. Divers. Distrib. 15, 742–750.CrossRefGoogle Scholar
  7. Chapuis, M.P., Estoup, A., 2006. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631.CrossRefGoogle Scholar
  8. Cressie, N.A., 1993. Spatial prediction and kriging. In: Statistics for Spatial Data, Revised Edition., pp. 105–209.Google Scholar
  9. Crispo, E., Bentzen, P., Reznick, D.N., Kinnison, M.T., Hendry, A.P., 2006. The relative influence of natural selection and geography on gene flow in guppies. Mol. Ecol. 15, 49–62.CrossRefGoogle Scholar
  10. Cushman, S.A., McKelvey, K.S., Hayden, J., Schwartz, M.K., 2006. Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am. Nat. 168, 486–499.CrossRefGoogle Scholar
  11. Cushman, S.A., Shirk, A.J., Landguth, E.X., 2013. Landscape genetics and limiting factors. Conserv. Genet. 14, 263–274.CrossRefGoogle Scholar
  12. Cushman, S.A., Max, T., Meneses, N., Evans, L.M., Ferrier, S., Honchak, B., Whitham, T.G., Allan, G.J., 2014. Landscape genetic connectivity in a riparian foundation tree is jointly driven by climatic gradients and river networks. Ecol. Appl. 24, 1000–1014.CrossRefGoogle Scholar
  13. Dahle, B., Swenson, J., 2003. Factors influencing length of maternal care and its consequences for offspring in brown bears Ursus arctos. Behav. Ecol. Sociobiol. 54, 352–358.CrossRefGoogle Scholar
  14. Davison, J., Ho, S.Y., Bray, S.C., Korsten, M., Tammeleht, E., Hindrikson, M., Ostbye, K., Ostbye, E., Lauritzen, S.E., Austin, J., 2011. Late-quaternary biogeographic scenarios for the brown bear (Ursus arctos), a wild mammal model species. Quat. Sci. Rev. 30, 418–430.CrossRefGoogle Scholar
  15. Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F.T., D’amen, M., Randin, C., Engler, R., Pottier, J., Pio, D., Dubuis, A., Pellissier, L., 2017. Ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787.CrossRefGoogle Scholar
  16. Dixon, J.D., Oli, M.K., Wooten, M.C., Eason, T.H., McCown, J.W., Cunningham, M.W., 2007. Genetic consequences of habitat fragmentation and loss: the case of the Florida black bear (Ursus americanus floridanus). Conserv. Genet. 8, 455–464.CrossRefGoogle Scholar
  17. Earl, D.A., von Holdt, B.M., 2011. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361.CrossRefGoogle Scholar
  18. Evanno, G., Regnaut, S., Goudet, J., 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620.CrossRefGoogle Scholar
  19. Frackowiak, W., Theuerkauf, J., Pirga, B., Gula, R., 2014. Brown bear habitat selection in relation to anthropogenic structures in the Bieszczady Mountains, Poland. Biologia 69, 926–930.Google Scholar
  20. Frichot, E., Schoville, S., Bouchard, G., François, O., 2012. Correcting principal component maps for effects of spatial autocorrelation in population genetic data. Front. Genet. 3.Google Scholar
  21. Garza, J., Williamson, E., 2001. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10, 305–318.CrossRefGoogle Scholar
  22. Goudet, J., 2001. FSTAT; A Program to Estimate and Test Gene Diversities and Fixation Indices Version 2.9.3. https://doi.org/www.unil.ch/izea/softwares/fstat.html.Google Scholar
  23. Graban, J., Kiskova,J., Pepich, P., Rigg, R., 2013. Genetic analysis for geographic isolation comparison of brown bears living in the periphery of the Western Carpathians Mountains with bears living in other areas. Open J. Genet. 3, 174.CrossRefGoogle Scholar
  24. Guillot, G., 2008. Inference of structure in subdivided populations at low levels of genetic differentiation—the correlated allele frequencies model revisited. Bioinformatics 24, 2222–2228.CrossRefGoogle Scholar
  25. Guillot, G., Mortier, F., Estoup, A., 2005. GENELAND: a computer package for landscape genetics. Mol. Ecol. Resour. 5, 712–715.CrossRefGoogle Scholar
  26. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978.Google Scholar
  27. Jakobsson, M., Rosenberg, N.A., 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806.CrossRefGoogle Scholar
  28. Kalinowski, S.T., 2004. Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conserv. Genet. 5, 539–543.CrossRefGoogle Scholar
  29. Kiabi, B.H., Dareshouri, B.F., Ghaemi, R.A., Jahanshahi, M., 2002. Population status of the Persian leopard (Panthera pardus saxicolor Pocock, 1927. in Iran. Zool. Middle East 26, 41–47.CrossRefGoogle Scholar
  30. Klug, P.E., Wisely, S.M., 2011. Population genetic structure and landscape connectivity of the Eastern Yellowbelly Racer (Coluber constrictor flaviventris) in the contiguous tallgrass prairie of northeastern Kansas, USA. Landsc. Ecol. 26, 281–294.CrossRefGoogle Scholar
  31. Landguth, E., Cushman, S., Murphy, M., Luikart, G., 2010. Relationships between migration rates and landscape resistance assessed using individual-based simulations. Mol. Ecol. Resour. 10, 854–862.CrossRefGoogle Scholar
  32. Lee, C.R., Mitchell-Olds, T., 2011. Quantifying effects of environmental and geographical factors on patterns of genetic differentiation. Mol. Ecol. 20, 4631–4642.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Martin, J., Basille, M., Van Moorter, B., Kindberg, J., Allaine, D., Swenson, J.E., 2010. Coping with human disturbance: spatial and temporal tactics of the brown bear(Ursus arctos). Can. J. Zool. 88, 875–883.CrossRefGoogle Scholar
  34. Mateo-Sánchez, M.C., Balkenhol, N., Cushman, S., Pérez, T., Domínguez, A., Saura, S., 2015. Estimating effective landscape distances and movement corridors: comparison of habitat and genetic data. Ecosphere 6, 1–16.CrossRefGoogle Scholar
  35. McCormack, J.E., Zellmer, A.J., Knowles, L.L., 2010. Does niche divergence accompany allopatric divergence in Aphelocoma jays as predicted under ecological speciation?: Insights from tests with niche models. Evolution 64, 1231–1244.PubMedGoogle Scholar
  36. McRae, B.H., 2006. Isolation by resistance. Evolution 60, 1551–1561.CrossRefGoogle Scholar
  37. McRae, B.H., Beier, P., 2007. Circuit theory predicts gene flow in plant and animal populations. Proc. Natl. Acad. Sci. U. S. A. 104, 19885–19890.CrossRefPubMedPubMedCentralGoogle Scholar
  38. McRae, B.H., Dickson, B.C., Keitt, T.H., Shah, V.B., 2008. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89, 2712–2724.CrossRefGoogle Scholar
  39. Mullins, J., McDevitt, A.D., Kowalczyk, R., Ruczynska, I., Górny, M., Wójcik, J.M., 2014. The influence of habitat structure on genetic differentiation in red fox populations in north-eastern Poland. Acta Theriol. 59, 367–376.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Murtskhvaladze, M., Gavashelishvili, A., Tarkhnishvili, D., 2010. Geographic and genetic boundaries of brown bear (Ursus arctos) population in the Caucasus. Mol. Ecol. 19, 1829–1841.CrossRefGoogle Scholar
  41. Paetkau, D., Strobeck, C., 1998. Ecological genetic studies of bears using microsatellite analysis. Ursus, 299–306.Google Scholar
  42. Paetkau, D., Slade, R., Burden, M., Estoup, A., 2004. Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol. Ecol. 13, 55–65.CrossRefGoogle Scholar
  43. Peakall, R., Smouse, P.E., 2012. GENALEX 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Piédallu, B., Quenette, P.Y., Bombillon, N., Gastineau, A., Miquel, C., Gimenez, O. 2017. Determinants and patterns of the endangered brown bear Ursus arctos habitat use in the French Pyrenees revealed by occupancy modeling. bioRxiv: 075895.Google Scholar
  45. Piry, S., Luikart, G., Cornuet, J.M., 1999. Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J. Hered. 90, 502–503.CrossRefGoogle Scholar
  46. Piry, S., Alapetite, A., Cornuet, J.M., Paetkau, D., Baudouin, L., Estoup, A., 2004. GENECLASS2: a software for genetic assignment and first-generation migrant detection. J. Hered. 95, 536–539.Google Scholar
  47. Pritchard, J.K., Stephens, M., Donnelly, P., 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945–959.PubMedPubMedCentralGoogle Scholar
  48. R Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  49. Rannala, B., Mountain, J.L., 1997. Detecting immigration by using multilocus genotypes. Proc. Natl. Acad. Sci. U. S. A. 94, 9197–9201.PubMedPubMedCentralGoogle Scholar
  50. Raymond, M., Rousset, F., 1995. An exact test for population differentiation. Evolution 49, 1280–1283.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Rosenberg, N.A., 2004. DISTRUCT: a program for the graphical display of population structure. Mol. Ecol. Resour. 4, 137–138.CrossRefGoogle Scholar
  52. Ruiz-González, A., Gurrutxaga, M., Cushman, S.A., Madeira, M.J., Randi, E., Gómez-Moliner, B.J., 2014. Landscape genetics forthe empirical assessment of resistance surfaces: the European pine marten (Martes martes) as a target-species of a regional ecological network. PLoS One 9, e110552.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sanderson, E.W., Redford, K.H., Chetkiewicz, C.L.B., Medellin, R.A., Rabinowitz, A.R., Robinson, J.G., Taber, A.B., 2002. Planning to save a species: the Jaguar as a model. Conserv. Biol. 16, 58–72.CrossRefGoogle Scholar
  54. Schuelke, M., 2000. An economic method forthe fluorescent labeling of PCR fragments. Nat. Biotechnol. 18, 233–234.CrossRefGoogle Scholar
  55. Senn, H.V., Pemberton, J.M., 2009. Variable extent of hybridization between invasive sika (Cervus nippon) and native red deer (C. elaphus) in a small geographical area. Mol. Ecol. 18, 862–876.CrossRefGoogle Scholar
  56. Sharma, S., Dutta, T., Maldonado, J.E., Wood, T.C., Panwar, H.S., Seidensticker, J., 2012. Spatial genetic analysis reveals high connectivity of tiger (Panthera tigris) populations in the Satpura-Maikal landscape of Central India. Ecol. Evol. 3, 48–60.CrossRefGoogle Scholar
  57. Short Bull, R., Cushman, S., Mace, R., Chilton, T., Kendall, K., Landguth, E., Schwartz, M., McKelvey, K., Allendorf, F.W., Luikart, G., 2011. Why replication is important in landscape genetics: American black bear in the Rocky Mountains. Mol. Ecol. 20, 1092–1107.CrossRefGoogle Scholar
  58. Spear, S.F., Balkenhol, N., Fortin, M.J., Mcrae, B.H., Scribner, K., 2010. Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol. Ecol. 19, 3576–3591.CrossRefGoogle Scholar
  59. Stoen, O.G., Bellemain, E., Saebo, S., Swenson, J.E., 2005. Kin-related spatial structure in brown bears Ursus arctos. Behav. Ecol. Sociobiol. 59, 191–197.CrossRefGoogle Scholar
  60. Straka, M., Paule, L., Ionescu, O., Stoflk, J., AdameC., M., 2012. Microsatellite diversity and structure of Carpathian brown bears (Ursus arctos): consequences of human caused fragmentation. Conserv. Genet. 13, 153–164.CrossRefGoogle Scholar
  61. Taberlet, P., Camarra, J.J., Griffin, S., Uhres, E., Hanotte, O., Waits, L., Dubois-Paganon, C., Burke, T., Bouvet, J., 1997. Noninvasive genetic tracking of the endangered Pyrenean brown bear population. Mol. Ecol. 6, 869–876.CrossRefGoogle Scholar
  62. Thorpe, R.S., Reardon, J.T., Malhotra, A., 2005. Common garden and natural selection experiments support ecotypic differentiation in the Dominican anole (Anolis oculatus). Am. Nat. 165, 495–504.CrossRefGoogle Scholar
  63. Tipping, M.E., Bishop, C.M., 1999. Probabilistic principal component analysis. J. R. Stat. Soc: Ser. B (Stat. Methodol.) 61, 611–622.CrossRefGoogle Scholar
  64. Van Oosterhout, C., Hutchinson, W.F., Wills, D.P., Shipley, P., 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Resour. 4, 535–538.CrossRefGoogle Scholar
  65. Waits, L., Paetkau, D., Strobeck, C., Ward, R.H., 1998. A comparison of genetic diversity in North American brown bears. Ursus, 307–314.Google Scholar
  66. Waits, L., Taberlet, P., Swenson, J.E., Sandegren, F., Franzen, R., 2000. Nuclear DNA microsatellite analysis of genetic diversity and gene flow in the Scandinavian brown bear (Ursus arctos). Mol. Ecol. 9, 421–431.CrossRefGoogle Scholar
  67. Wall, W.A., Douglas, N.A., Hoffmann, W.A., Wentworth, T.R., Gray, J.B., Xiang, Q.Y.J., Knaus, B.K., Hohmann, M.G., 2014. Evidence of population bottleneck in Astragalus michauxii (Fabaceae), a narrow endemic of the southeastern United States. Conserv. Genet. 15, 153–164.CrossRefGoogle Scholar
  68. Wang, I.J., 2013. Examining the full effects of landscape heterogeneity on spatial genetic variation: a multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution 67, 3403–3411.CrossRefGoogle Scholar
  69. Wang, I.J., Bradburd, G.S., 2014. Isolation by environment. Mol. Ecol. 23, 5649–5662.CrossRefGoogle Scholar
  70. Wang, I.J., Summers, K., 2010. Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison-dart frog. Mol. Ecol. 19, 447–458.CrossRefGoogle Scholar
  71. Warren, D.L., Glor, R.E., Turelli, M., 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868–2883.CrossRefGoogle Scholar
  72. Wasserman, T.N., Cushman, S.A., Schwartz, M.K., Wallin, D.O., 2010. Spatial scaling and multi-model inference in landscape genetics: Martes Americana in northern Idaho. Landsc. Ecol. 25, 1601–1612.CrossRefGoogle Scholar
  73. Weir, B.S., Cockerham, C.C., 1984. Estimating F-statistics forthe analysis of population structure. Evolution 38, 1358–1370.PubMedGoogle Scholar
  74. Wiens, J.J., Ackerly, D.D., Allen, A.P., Anacker, B.L., Buckley, L.B., Cornell, H.V., Damschen, E.I., Jonathan, Davies T., Grytnes, J.A., Harrison, S.P., Hawkins, B.A., Holt, R.D., McCain, C.M., Stephens, P.R., 2010. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324.CrossRefGoogle Scholar
  75. Wright, S., 1943. Isolation by distance. Genetics 28, 114–138.PubMedPubMedCentralGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2018

Authors and Affiliations

  • Mohammad-Reza Ashrafzadeh
    • 1
    • 2
  • Rasoul Khosravi
    • 1
  • Mohsen Ahmadi
    • 3
    • 4
  • Mohammad Kaboli
    • 1
    Email author
  1. 1.Department of Environmental Sciences, Faculty of Natural ResourcesUniversity of TehranKarajIran
  2. 2.Department of Fisheries and Environmental Sciences, Faculty of Natural Resources and Earth SciencesShahrekord UniversityShahrekordIran
  3. 3.Department of Desert Regions Management, School of AgricultureShiraz UniversityShirazIran
  4. 4.Swiss Federal Research Institute WSLBirmensdorfSwitzerland

Personalised recommendations