Mammalian Biology

, Volume 95, Issue 1, pp 155–159 | Cite as

Acoustic detection of radiotracked foraging bats in temperate lowland forests

  • Laurent Tillon
  • Michel Barataud
  • Sylvie Giosa
  • Stéphane AulagnierEmail author
Short communication


During the recent years studies of bat activity are predominantly based on ultrasound detection. However this method suffers from several biases such as different species call ranges, temporal and habitat-related variability. In order to test the bias linked to the detection of whispering gleaning bats in temperate lowland forests, we equipped several individuals of Myotis bechsteinii and Plecotus auritus with transmitters and followed them on their foraging grounds where we simultaneously recorded echolocation calls. Our results highlight the very low detectability of these species whose presence was ascertained at the recording station. On the other hand, we detected the presence of many other species. We suggest methodological recommendations for ultrasound detection whenever gleaning bat species are concerned.


Acoustic Detection Habitat Myotis bechsteinii Plecotus auritus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, A.M., Jantzen, M.K., Hamilton, R.M., Fenton, M.B., 2012. Do you hear what I hear? Implications of detector selection for acoustic monitoring of bats. Methods Ecol. Evol. 3, 992–998.Google Scholar
  2. Albert, C.H., Thuiller, W., 2008. Favourability functions versus probability of presence: advantages and misuses. Ecography 31, 417–422.Google Scholar
  3. Aldridge, H.D.J.N., Brigham, R.M., 1988. Load carrying and maneuverability in an insectivorous bat: atest ofthe 5% “rule” of radio-telemetry. J. Mammal. 69, 379–382.Google Scholar
  4. Aldridge, H.D.J.N., Rautenbach, I.L., 1987. Morphology, echolocation and resource partitioning in insectivorous bats. J. Anim. Ecol. 56, 763–778.Google Scholar
  5. Amelon, S.K., Dalton, D.C., Millspaugh, J.J., Wolf, S.A., 2009. Radiotelemetry. Techniques and analysis. In: Kunz, T.H., Parsons, S. (Eds.), Ecological and Behavioral Methods for the Study of Bats., 2nd ed. The Johns Hopkins University Press, Baltimore, pp. 57–77.Google Scholar
  6. Anderson, M.E., Racey, P.A., 1991. Feeding behaviour of captive brown long-eared bats, Plecotus auritus. Anim. Behav. 42, 489–493.Google Scholar
  7. Anderson, M.E., Racey, P.A., 1993. Discimination between fluttering and non-fluttering moths by brown long-eared bats, Plecotus auritus. Anim. Behav. 46, 1151–1155.Google Scholar
  8. Archaux, F., Tillon, L, Fauvel, B., Martin, H., 2013. Foraging habitat use by bats in a large temperate oak forest: importance of mature and regeneration stands. Rhinolophe 19, 47–58.Google Scholar
  9. Ashrafi, S., Beck, A., Rutishauser, M., Arlettaz, R., Bontadina, F., 2011. Trophic niche partitioning of cryptic species of long-eared bats in Switzerland: implications for conservation. Eur.J. Wildl. Res. 57, 843–849.Google Scholar
  10. Barataud, M., 2005. Acoustic variability, and identification possibilities for seven European bats ofthe genus Myotis. Rhinolophe 17, 43–62.Google Scholar
  11. Barataud, M., 2012. Ecologie acoustique des Chiroptères d’Europe. Identification des espèces, étude de leurs habitats et comportements de chasse. Biotope - Muséum National d’Histoire Naturelle, Mèze - Paris.Google Scholar
  12. Britzke, E.R., Gillam, E.H., Murray, K.L., 2013. Current state of understanding of ultrasonic detectors for the study of bat ecology. Acta Theriol. 58, 109–117.Google Scholar
  13. Brotons, L., Thuiller, W., Araujo, M.B., Hirzel, A.H., 2004. Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography 27, 437–448.Google Scholar
  14. Collins, J., Jones, G., 2009. Differences in bat activity in relation to bat detector height: implications for bat surveys at proposed windfarm sites. Acta Chiropt. 11, 343–350.Google Scholar
  15. Fenton, M.B., 2013. Chapter 3 - evolution of echolocation. In: Adams, R.A., Pedersen, S.C. (Eds.), Bat Evolution, Ecology, and Conservation. Springer Science and Business Media, New York, pp. 47–70.Google Scholar
  16. Froidevaux, J.S.P., Zellweger, F., Bollmann, K., Obrist, M.K., 2014. Optimizing passive acoustic sampling of bats in forests. Ecol. Evol. 4, 4690–4700.PubMedPubMedCentralGoogle Scholar
  17. Froidevaux, J.S.P., Zellweger, F., Bollmann, K., Jones, G., Obrist, M.K., 2016. From field surveys to LIDAR: shining a light on how bats respond to forest structure. Remote Sens. Environ. 175, 242–250.Google Scholar
  18. Gooch, M.M., Heupel, A.M., Price, S.J., Dorcas, M.E., 2006. The effects of survey protocol on detection probabilities and site occupancy estimates of summer breeding anurans. Appl. Herpetol. 3, 129–142.Google Scholar
  19. Gorresen, P.M., Miles, A.C., Todd, C.M., Bonaccorso, F.J., Weller, T.J., 2008. Assessing bat detectability and occupancy with multiple automated echolocation detectors. J. Mammal. 89, 11–17.Google Scholar
  20. Hayes, J.P., 2000. Assumptions and practical considerations in the design and interpretation of echolocation-monitoring studies. Acta Chiropt. 2, 225–236.Google Scholar
  21. Hayes, J.P., Ober, H.K., Sherwin, R.E., 2009. Survey and monitoring of bats. In: Kunz, T.H., Parsons, S. (Eds.), Ecological and Behavioral Methods for the Study of bats., 2nd ed. The Johns Hopkins University Press, Baltimore, pp. 112–129.Google Scholar
  22. Kennedy, J.P., Sillett, S.C, Szewczak, J.M., 2014. Bat activity across the vertical gradient of an old-growth Sequoia sempervirens forest. Acta Chiropt. 16, 53–63.Google Scholar
  23. Kéry, M., Schmid, H., 2004. Monitoring programs need to take into account imperfect species detectability. Basic. Appl. Ecol. 5, 65–73.Google Scholar
  24. Kubista, C.E., Bruckner, A., 2017. Within-site variability of field recordings from stationary, passively working detectors. Acta Chiropt. 19, 189–197.Google Scholar
  25. Lobo, J.M., Jiménez-Valverde, A., Hortal, J., 2010. The uncertain nature of absences and their importance in species distribution modelling. Ecography 33, 103–114.Google Scholar
  26. Luszcz, T.M.J., Barclay, R.M.R., 2016. Influence of forest composition and age on habitat use by bats in southwestern British Columbia. Can. J. Zool. 94, 145–153.Google Scholar
  27. Mackenzie, D.I., 2005. Was it there? Dealing with imperfect detection for species presence/absence data. Aust. N. Zeal. J. Stat. 47, 65–74.Google Scholar
  28. Mackenzie, D.I., Royle, J.A., 2005. Designing occupancy studies: general advice and allocating survey effort. J. Appl. Ecol. 42, 1105–1114.Google Scholar
  29. Meschede, A., Heller, K.G., 2003. Ecologie et protection des chauves-souris en milieu forestier. Rhinolophe 16, 1–248.Google Scholar
  30. Müller, J., Mehr, M., Bässler, C., Fenton, M.B., Hothorn, T., Pretzsch, H., Klemmt, H.J., Brandl, R., 2012. Aggregative response in bats: prey abundance versus habitat. Oecologia 169, 673–684.PubMedGoogle Scholar
  31. Nichols, J.D., Hines, J.E., Sauer, J.R., Fallon, F.W., Fallon, J.E., Heglund, P.J., 2000. A double-observer approach for estimating detection probability and abundance from point counts. Auk 117, 393–408.Google Scholar
  32. Parsons, S., Szewczak, J.M., 2009. Detecting, recording, and analysis the vocalizations of bats. In: Kunz, T.H., Parsons, S. (Eds.), Ecological and Behavioral Methods for the Study of Bats., 2nd ed. The Johns Hopkins University Press, Baltimore, pp. 91–111.Google Scholar
  33. Patriquin, K.J., Hogberg, L.K., Chruszcz, B.J., Barclay, R.M.R., 2003. The influence of habitat structure on the ability to detect ultrasound using bat detectors. Wildl. Soc. Bull. 31, 475–481.Google Scholar
  34. Pauli, B.P., Zollner, P.A., Haulton, G.S., 2017. Nocturnal habitat selection of bats using occupancy models. J. Wildl. Manage. 81, 878–891.Google Scholar
  35. Pellet, J., Schmidt, B.R., 2005. Monitoring distributions using call surveys: estimating site occupancy, detection probabilities and inferring absence. Biol. Conserv. 123, 27–35.Google Scholar
  36. Plank, M., Fiedler, K., Reiter, G., 2012. Use of forest strata by bats in temperate forests. J. Zool. 286, 154–162.Google Scholar
  37. Rieger, I., Nagel, P., 2007. Vertical stratification of bat activity in a deciduous forest. In: Unterseher, M., Morawetz, W., Klotz, S., Arndt, E. (Eds.), The Canopy of a Temperate Floodplain Forest - Results from Five Years of Research at the Leipzig Canopy Crane. Universität Leipzig, The Leipzig Canopy Crane Project Leipzig, pp. 141–149.Google Scholar
  38. Robinson, M.F., 1990. Prey selection by the brown long-eared bat (Plecotus auritus). Myotis 28, 5–18.Google Scholar
  39. Royle, JA, Nichols, J.D., Kery, M., 2005. Modelling occurrence and abundance of species when detection is imperfect. Oikos 110, 353–359.Google Scholar
  40. Shiel, C.B., McAney, CM., Fairley, J.S., 1991. Analysis ofthe diet of Natterer’s bat Myotis nattereri and the common long-eared bat Plecotus auritus in the West of Ireland. J. Zool. 223, 299–305.Google Scholar
  41. Siemers, B.M., Swift, S.M., 2006. Differences in sensory ecology contribute to resource partitioning in the bats Myotis bechsteinii and Myotis nattereri (Chiroptera: Vespertilionidae). Behav. Ecol. Sociobiol. 59, 373–380.Google Scholar
  42. Skalak, S.L., Sherwin, R.E., Brigham, R.M., 2012. Sampling period, size and duration influence measures of bat species richness from acoustic surveys. Methods Ecol. Evol. 3, 490–502.Google Scholar
  43. Skiba, R., 2009. Europäische Fledermäuse: Kennzeichen, Echoortung und Detektoranwendung. Die Neue Brem-Bücherei Band 648, Westarp Wissenschaften-Verlagsgesellschaft GmbH, Horenwersleben.Google Scholar
  44. Stahlschmidt, P., Brühl, C.A., 2012. Bats as bioindicators - the need of a standardized method for acoustic bat activity surveys. Methods Ecol. Evol. 3, 503–508.Google Scholar
  45. Swift, S.M., 1998. Long-eared bats. In: {iePoyser Natural History}. T and AD Poyser Ltd., London.Google Scholar
  46. Tanadini, L.G., Schmidt, B.R., 2011. Population size influences amphibian detection probability: implications for biodiversity monitoring programs. PLoS One 6, e28244.PubMedPubMedCentralGoogle Scholar
  47. Tyre, A.J., Tenhumberg, B., Field, S.A., Niejalke, D., Parris, K., Possingham, H.P., 2003. Improving precision and reducing bias in biological surveys: estimating false-negative error rates. Ecol. Appl. 13, 1790–1801.Google Scholar
  48. Weller, T.J., 2008. Using occupancy estimation to assess the effectiveness of a regional multiple-species conservation plan: bats in the Pacific Northwest. Biol. Conserv. 141, 2279–2289.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2019

Authors and Affiliations

  • Laurent Tillon
    • 1
  • Michel Barataud
    • 2
  • Sylvie Giosa
    • 2
  • Stéphane Aulagnier
    • 3
    Email author
  1. 1.ONF Réseau mammifèresDirection des Forêts et des Risques NaturelsParis Cedex 12France
  2. 2.SFEPM, ColombeixSaint-Amand-JartoudeixFrance
  3. 3.Comportement et Ecologie de la Faune Sauvage, INRAUniversité de Toulouse, CS 52627Castanet Tolosan CedexFrance

Personalised recommendations