Advertisement

Mammalian Biology

, Volume 94, Issue 1, pp 140–148 | Cite as

Hybridization between the European and Asian badgers (Meles, Carnivora) in the Volga-Kama region, revealed by analyses of maternally, paternally and biparentally inherited genes

  • Emi Kinoshita
  • Alexei V. Abramov
  • Vyacheslav A. Soloviev
  • Alexander P. Saveljev
  • Yoshinori Nishita
  • Yayoi Kaneko
  • Ryuichi MasudaEmail author
Original investigation

Abstract

Two closely related species of Meles (Carnivora), the European badger (M. meles) and the Asian badger (M. leucurus), are distributed allopatrically in continental Eurasia but show a narrow contact zone around the Volga and Kama Rivers, Russia. We analyzed maternally (mitochondrial DNA), paternally (SRY gene and CAN-SINEs on the Y chromosome), and biparentally (CFTR gene and nine microsatellite loci) inherited genes for evidence of hybridization between the two species in the contact zone. Of 71 badgers examined, we identified 17 individuals as hybrids with mixed genotypes for the first time. Some hybrids appeared to have resulted from repeated backcrossing with the parental species. In addition, the hybridization was symmetric between the two species. Compared with previous palaeontological data, the hybridization between the two species could have resulted from secondary contact due to western expansion in distribution by the Asian badgers.

Keywords

Hybrid Meles leucurus Meles meles Microsatellite Volga-Kama region 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramov, A.V., Puzachenko, A.Y., 2005. Sexual dimorphism of craniological characters in Eurasian badgers, Meles spp. Carnivora, Mustelidae). Zool. Anz. 244, 11–29.CrossRefGoogle Scholar
  2. Abramov, A.V., Puzachenko, A.Y., 2006. Geographical variability of skull and taxonomy of Eurasian badgers (Mustelidae, Meles). Zool. Zh. 85, 641–655.Google Scholar
  3. Abramov, A.V., Puzachenko, A.Y., 2007. Possible hybridization between Meles Meles and M. leucurus (Carnivora, Mustelidae) in Western Tien Shan. In: Rozhnov, V.V., Tembotova, F.A. (Eds.), Mammals of Mountain Territories. KMK Scientific Press, Moscow, pp. 4–7.Google Scholar
  4. Abramov, A.V., Puzachenko, A.Y., 2013. The taxonomic status of badgers (Mammalia, Mustelidae) from Southwest Asia based on cranial morphometrics, with the redescription of Meles canescens. Zootaxa3681, 44–58.Google Scholar
  5. Abramov, A.V., Saveljev, A.P., Sotnikov, V.N., Soloviev, V.A., 2003. Distribution of two badger species (Mustelidae, Meles) in European part of Russia. In: Averianov, A.O., Abramson, N.I. (Eds.), Systematics, Phylogeny, and Paleontology of Small Mammals. ZIN RAS, Saint Petersburg, pp. 5–9.Google Scholar
  6. Adams, J.R., Lucash, C., Schutte, L., Waits, L.P., 2007. Locating hybrid individuals in the red wolf (Canis rufus) experimental population area using a spatially targeted sampling strategy and faecal DNA genotyping. Mol. Ecol. 16, 1823–1834.CrossRefGoogle Scholar
  7. Allendorf, F.W., Leary, R.F., Spruell, P., Wenburg, J.K., 2001. The problems with hybrids: setting conservation guidelines. Trends Ecol. Evol. 16, 613–622.CrossRefGoogle Scholar
  8. Anderson, E.C., Thompson, E.A., 2002. A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160, 1217–1229.PubMedPubMedCentralGoogle Scholar
  9. Baryshnikov, G.F., Puzachenko, A.Y., Abramov, A.V., 2003. New analysis of variability of cheekteeth in Eurasian badgers (Carnivora, Mustelidae, Meles). Russ. J. Theriol. 1, 133–149.CrossRefGoogle Scholar
  10. Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N., Bonhomme, F., 2000. GENETIX 4.02, Logiciel sous windows pour la génétique des populations. In: Laboratoire Génome, Populations, Interactions. Université de Montpellier II, France, Montpellier.Google Scholar
  11. Cabria, M.T., Michaux, J.R., Gómez-Moliner, B.J., Skumatov, D., Maran, T., Fournier, P., López De Luzuriaga, J., Zardoya, R., 2011. Bayesian analysis of hybridization and introgression between the endangered European mink (Mustela lutreola) and the polecat (Mustela putorius). Mol. Ecol. 20, 1176–1190.CrossRefGoogle Scholar
  12. Carpenter, P.J., Dawson, D.A., Greig, C., Parham, A., Cheeseman, C., Burke, T., 2003. Isolation of 39 polymorphic microsatellite loci and the development of a fluorescently labelled marker set for the Eurasian badger (Meles Meles) (Carnivora: Mustelidae). Mol. Ecol. Notes 3, 610–615.CrossRefGoogle Scholar
  13. Del Cerro, I., Marmi, J., Ferrando, A., Chashchin, P., Taberlet, P., Bosch, M., 2010. Nuclear and mitochondrial phylogenies provide evidence for four species of Eurasian badgers (Carnivora). Zool. Scr. 39, 415–425.CrossRefGoogle Scholar
  14. Dowling, T.E., Secor, C.L., 1997. The role of hybridization and introgression in the diversification of animals. Annu. Rev. Ecol. Syst. 28, 593–619.CrossRefGoogle Scholar
  15. Excoffier, L., Lischer, H.E., 2010. Arlequin suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567.CrossRefGoogle Scholar
  16. Falush, D., Stephens, M., Pritchard, J., 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587.PubMedPubMedCentralGoogle Scholar
  17. Falush, D., Stephens, M., Pritchard, J.K., 2007. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol. Ecol. Notes 7, 574–578.CrossRefGoogle Scholar
  18. Freeman, G.H., Halton, J.H., 1951. Note on an exact treatment of contingency, goodness of fit and other problems of significance. Biometrika 38, 141–149.CrossRefGoogle Scholar
  19. Gasilin, V.V., Kosintsev, P.A., 2010. Replacement of the European badger (Meles Meles L, 1758) by the Asian badger (Meles leucurus Hodgson, 1847) at the boundary between Europe and Asia in the Holocene epoch. Dokl. Akad. Nauk 432, 715–717.Google Scholar
  20. Gaubert, P., Taylor, P.J., Fernandes, C.A., Bruford, M.W., Veron, G., 2005. Patterns of cryptic hybridization revealed using an integrative approach: a case study on genets (Carnivora, Viverridae, Genetta spp.) from the southern African subregion. Biol. J. Linn. Soc. 86, 11–33.CrossRefGoogle Scholar
  21. Hasselman, D.J., Argo, E.E., McBride, M.C., Bentzen, P., Schultz, T.F., Perez-Umphrey, A.A., Palkovacs, E.P., 2014. Human disturbance causes the formation of a hybrid swarm between two naturally sympatric fish species. Mol. Ecol. 23, 1137–1152.CrossRefGoogle Scholar
  22. Heptner, V.G., Naumov, N.P., Yurgenson, P.B., Sludsky, A.A., Chirkova, A.F., Bannikov, A.G., 1967. Mammals of the Soviet Union, 2. Vysshaya Shkola, Moscow, 1.Google Scholar
  23. Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.CrossRefGoogle Scholar
  24. Kinoshita, E., Kosintsev, P.A., Raichev, E.G., Haukisalmi, V.K., Kryukov, A.P., Wiig, Ø, Abramov, A.V., Kaneko, Y., Masuda, R., 2017. Molecular phylogeny of Eurasian badgers (Meles) around the distribution boundaries, revealed by analyses of mitochondrial DNA and Y-chromosomal genes. Biochem. Syst. Ecol. 71, 121–130.CrossRefGoogle Scholar
  25. Marmi, J., López-Giráldez, F., Macdonald, D.W., Calafell, F., Zholnerovskaya, E., Domingo-Roura, X., 2006. Mitochondrial DNA reveals a strong phylogeographic structure in the badger across Eurasia. Mol. Ecol. 15, 1007–1020.CrossRefGoogle Scholar
  26. Messing, J., 1983. New M13 vectors for cloning. Method. Enzymol 101, 20–78.CrossRefGoogle Scholar
  27. Pritchard, J.K., Stephens, M., Donnelly, P., 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945–959.PubMedPubMedCentralGoogle Scholar
  28. Rodriguez, D., Ceden˜o-Vásquez, J.R., Forstner, M.R.J., Densmore, L.D., 2008. Hybridization between Crocodylus acutus and Crocodylus moreletii in the Yucatan Peninsula: II. Evidence from microsatellites. J. Exp. Zool. A309, 674–686.CrossRefGoogle Scholar
  29. Saitou, N., Nei, M., 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  30. Taberlet, P., Bouvet, J., 1994. Mitochondrial DNA polymorphism, phylogeography, and conservation genetics of the brown bear Ursus arctos in Europe. Proc. R. Soc. B-Biol. Sci. 255, 195–200.CrossRefGoogle Scholar
  31. Tashima, S., Kaneko, Y., Anezaki, T., Baba, M., Yachimori, S., Abramov, A.V., Saveljev, A.P., Masuda, R., 2011a. Phylogeographic sympatry and isolation of the Eurasian badgers (Meles, Mustelidae, Carnivora): implications for an alternative analysis using maternally as well as paternally inherited genes. Zool. Sci. 28, 293–303.CrossRefGoogle Scholar
  32. Tashima, S., Kaneko, Y., Anezaki, T., Baba, M., Yachimori, S., Abramov, A.V., Saveljev, A.P., Masuda, R., 2011b. Identification and molecular variations of CAN-SINEs from the ZFY gene final intron of the Eurasian badgers (genus Meles). Mamm. Study 36, 41–48.CrossRefGoogle Scholar
  33. Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.CrossRefGoogle Scholar
  34. Ternovsky, D.V., Ternovskaya, Y.G., 1994. Ecology of Mustelids. Nauka, Novosibirsk.Google Scholar
  35. Trigo, T.C., Freitas, T.R.O., Kunzler, G., Cardoso, L, Silva, J.C.R., Johnson, W.E., O’Brien, S.J., Bonatto, S.L, Eizirik, E., 2008. Inter-species hybridization among Neotropical cats of the genus Leopardus, and evidence for an introgressive hybrid zone betweenL. geoffroyi and L. tigrinus in southern Brazil. Mol. Ecol. 17, 4317–4333.CrossRefGoogle Scholar
  36. Trigo, T.C., Schneider, A., De Oliveira, T.G., Lehugeur, L.M., Silveira, L, Freitas, T.R.O., Eizirik, E., 2013. Molecular data reveal complex hybridization and a cryptic species of Neotropical wild cat. Curr. Biol. 23, 2528–2533.CrossRefGoogle Scholar
  37. Tumanov, I.L, Abramov, A.V., 2002. A study of the hybrids between the European mink Mustela lutreola and the polecat M. putorius. Small Carniv. Conserv. 27, 29–31.Google Scholar
  38. Venta, P.J., Brouillette, J.A., Yuzbasiyan-Gurkan, V., Brewer, G.J., 1996. Gene-specific universal mammalian sequence-tagged sites: application to the canine genome. Biochem. Genet. 34, 321–341.CrossRefGoogle Scholar
  39. Virgós, E., Kowalczyk, R., Trua, A., Marinis, A., Mangas, J.G., Barea-Azcón, J.M., Geffen, E., 2011. Body size clines in the European badger and the abundant centre hypothesis. J. Biogeogr. 38, 1546–1556.CrossRefGoogle Scholar
  40. Yamada, C., Masuda, R., 2010. Molecular phylogeny and evolution of sex-chromosomal genes and SINE sequences in the family Mustelidae. Mamm. Study 35, 17–30.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2019

Authors and Affiliations

  • Emi Kinoshita
    • 1
  • Alexei V. Abramov
    • 2
  • Vyacheslav A. Soloviev
    • 3
  • Alexander P. Saveljev
    • 3
  • Yoshinori Nishita
    • 1
    • 4
  • Yayoi Kaneko
    • 5
  • Ryuichi Masuda
    • 1
    • 4
    • 6
    Email author
  1. 1.Department of Natural History Sciences, Graduate School of ScienceHokkaido UniversitySapporoJapan
  2. 2.Zoological InstituteRussian Academy of SciencesSaint-PetersburgRussia
  3. 3.Russian Research Institute of Game Management and Fur FarmingKirovRussia
  4. 4.Department ofBiological Sciences, Faculty of ScienceHokkaido UniversitySapporoJapan
  5. 5.Institute of AgricultureTokyo University of Agriculture and TechnologyTokyoJapan
  6. 6.Department of Biological Sciences, Faculty of ScienceHokkaido UniversitySapporoJapan

Personalised recommendations