Advertisement

Mammalian Biology

, Volume 92, Issue 1, pp 30–36 | Cite as

Behavioural ecology in a predator-prey system

  • Douglas de Matos DiasEmail author
  • Claudia Bueno de Campos
  • Flávio Henrique Guimarães Rodrigues
Original investigation

Abstract

Predator-prey systems are regulated by a behavioral response race, in which the predator develops adaptations that enhance its hunting success and its prey adopt anti-predator strategies. In the present study, we analyzed the activity patterns, the influence of moonlight, and the habitat use of Leopardus pardalis and Puma concolor in comparison with their potential prey, Dasypus novemcinctus, Mazama gouazoubira, Pecari tajacu, Sapajus libidinosus, Kerodon rupestris, Cuniculus paca and Dasyprocta prymnolopha, in the Serra das Almas Nature Reserve in northeastern Brazil. Leopardus pardalis was predominantly nocturnal, while P. concolor presented a cathemeral pattern, however, the overlap coefficient between these species was high. The activity of L. pardalis overlapped strongly with three typical nocturnal prey (D. novemcinctus, K. rupestris and C. paca). While P. concolor had considerable temporal overlap with all prey. Both predators were habitat generalists, in contrast, most prey species exhibited a significant association with a specific type of habitat. The phases of the moon did not influence the activity patterns of the different species, except for K. rupestris, which was more active on moonlit nights. Our findings indicate that the predators maximize the efficiency of their foraging behavior by using habitats and the circadian cycle in a more generalist manner.

Keywords

Activity pattern Caatinga Carnivores Habitat use Mammals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araújo, F.S., Martins, F.R., 1999. Fisionomiae organização da vegetação do carrasco no planalto da Ibiapaba, estado do Ceará. Acta Bot. Bras. 13 (1), 1–13,  https://doi.org/10.1590/S0102-33061999000100002.Google Scholar
  2. Araújo, F.S., Martins, F.R., Shepherd, G.J., 1999. Variações estruturais e florísticas do carrasco no planalto da Ibiapaba, estado do Ceará. Rev. Bras. Biol. 59 (4), 663–678,  https://doi.org/10.1590/S0034-71081999000400015.PubMedGoogle Scholar
  3. Caatinga, Associação, 2012. Plano de Manejo da Reserva Natural Serra das Almas, 3- iteração. Crateús.Google Scholar
  4. Berger, J., 2010. Fear-mediated food webs. In: Terborgh, J., Estes, J.A. (Eds.), Trophic Cascades: Predators, Prey and the Changing Dynamics of Nature. Island Press, Washington, pp. 241–254.Google Scholar
  5. Bianchi, R.C., Mendes, S.L., 2007. Ocelot (Leopardus pardalis) predation on primates in caratinga biological station, Southeast Brazil. Am. J. Primatol. 69, 1173–1178,  https://doi.org/10.1002/ajp.20415.Google Scholar
  6. Bianchi, R.C., Mendes, S.L., Marco Junior, P., 2010. Food habits of the ocelot, Leopardus pardalis, in two areas in southeast Brazil. Stud. Neotrop. Fauna Environ. 45 (3), 111–119,  https://doi.org/10.1080/01650521.2010.514791.Google Scholar
  7. Brown, J.S., 1999. Patch use under predation risk: I. Models and predictions. Ann. Zool. Fenn. 29, 301–309.Google Scholar
  8. Crawley, M.J., 2013. The R Book, 2nd. edn. Wiley, Chichester.Google Scholar
  9. Daan, S., 1981. Adaptive daily strategies in behaviour. In: Aschoff, J. (Ed.), Biological Rhythms. Plenum Press, New York, pp. 275–298.Google Scholar
  10. Daly, M., Behrends, P.R., Wilson, M.I., Jacobs, L.F., 1992. Behavioural modulation of predation risk: monnlight avoidance and crepuscular compensation in a nocturnal desert rodent, Dipodomys merriami. Anim. Behav. 44, 1–9,  https://doi.org/10.1016/S0003-3472(05)80748-1.Google Scholar
  11. Di Bitetti, M.S., De Angelo, C., Di Blanco, Y.E., Paviolo, A., 2010. Niche partitioning and species coexistence in a neotropical felid assemblage. Acta Oecol. 36, 403–412,  https://doi.org/10.1016/j.actao.2010.04.001.Google Scholar
  12. Dias, D.M., Bocchiglieri, A., 2015. Dieta de carnívoros (Mammalia, Carnivora) em um remanescente de Caatinga, Nordeste do Brasil. Bioikos 29 (1), 13–19.Google Scholar
  13. Dias, D.M., Bocchiglieri, A., 2016. Trophic and spatio-temporal niche of the crab-eating fox, Cerdocyon thous (Linnaeus, 1766) (Carnivora: Canidae), in a remnant of the Caatinga in Northeastern Brazil. Mammalia 80 (3), 281–291,  https://doi.org/10.1515/mammalia-2014-0108.Google Scholar
  14. Duarte, J.M.B., Vogliotti, A., Zanetti, E.S., Oliveira, M.L., Tiepolo, L.M., Rodrigues, L.F., Almeida, L.B., 2012. Avaliação do risco de extinção do veado-catingueiro Mazama gouazoubira G. Fischer [von Waldheim], 1814,3. Biodiversidade Brasileira, Brasil, pp. 50–58.Google Scholar
  15. Elbroch, L.M., Wittmer, H.U., 2012. Puma spatial ecology in open habitats with aggregate prey. Mamm. Biol. 77, 377–384,  https://doi.org/10.1016/j.mambio.2012.02.010.Google Scholar
  16. Eriksen, A., Wabakken, P., Zimmermann, B., Andreassen, H.P., Arnemo, J.M., Gundersen, H., Liberg, O., Linnell,J., Milner, J.M., Pedersen, H.C., Sand, H., Solberg, E.J., Storaas, T., 2011. Activity patterns of predator and prey: a simultaneous study of GPS-collared wolves and moose. Anim. Behav. 81, 423–431,  https://doi.org/10.1016/j.anbehav.2010.11.011.Google Scholar
  17. Fernández-Duque, E., 2003. Influences of moonlight, ambient temperature, and food availability on the diurnal and nocturnal activity of owl monkeys (Aotus azarai). Behav. Ecol. Sociobiol. 54, 431–440,  https://doi.org/10.1007/s00265-003-0637-9.Google Scholar
  18. Foster, V.C., Sarmento, P., Sollmann, R., Tôrres, N., Jácomo, A.T.A., Negrões, N., Fonseca, C., Silveira, L., 2013. Jaguar and Puma activity patterns and predator-prey interactions in four Brazilian biomes. Biotropica, 1–7,  https://doi.org/10.1111/btp.12021.Google Scholar
  19. Gorini, L., Linnell, J.D.C., May, R., Panzacchi, M., Boitani, L., Odden, M., Nilsen, E.B., 2012. Habitat heterogeneity and mammalian predator-prey interactions. Mammal Rev. 42 (1), 55–77,  https://doi.org/10.1111/j.1365-2907.2011.00189.x.Google Scholar
  20. Griffin, P.C., Griffin, S.C., Waroquiers, C., Mills, LS., 2005. Mortality by moonlight: predation risk and the snowshoe hare. Behav. Ecol. 16, 938–944,  https://doi.org/10.1093/beheco/ari074.Google Scholar
  21. Gursky, S., 2003. Lunar philia in a nocturnal primate. Int. J. Primatol. 24, 351–367,  https://doi.org/10.1023/A:1023053301059.Google Scholar
  22. Harmsen, B.J., Foster, R.J., Silver, S.C., Ostro, L.E.T., Doncaster, C.P., 2011. Jaguar and puma activity patterns in relation to their main prey. Mamm. Biol. 76, 320–324,  https://doi.org/10.1016/j.mambio.2010.08.007.Google Scholar
  23. Hernández-Saintmartín, A.D., Rosas-Rosas, O.C., Palacio-Núñez, J., Tarango-Arámbula, L.A., Clemente-Sánchez, F., Hoogesteijn, A.L., 2013. Activity patterns of jaguars, puma and their potential prey in San Luis Potosi, Mexico. Acta Zool. Mex. 29 (3), 520–533.Google Scholar
  24. Huck, M., Juárez, C.P., Fernández-Duque, E., 2017. Relationship between moonlight and nightly activity patterns of the ocelot (Leopardus pardalis) and some of its prey species in Formosa, Northern Argentina. Mamm. Biol. 82, 57–64,  https://doi.org/10.1016/j.mambio.2016.10.005.Google Scholar
  25. Iriarte, J.A., Franklin, W.L., Johnson, W.E., Redford, K.H., 1990. Biogeographic variation of food habits size ofthe America puma. Oecologia 85, 185,  https://doi.org/10.1007/BF00319400.190.PubMedGoogle Scholar
  26. Jenny, D., Zuberbuhler, K., 2005. Hunting behaviour in West African forest leopards. Afr.J. Ecol. 43, 197–200,  https://doi.org/10.1111/j.1365-2028.2005.00565.x.Google Scholar
  27. Kotler, B.P., Brown, J.S., Bouskila, A., Mukherjee, S., Goldberg, T., 2004. Foraging games between gerbils and their predators: seasonal changes in schedules of activity and apprehension. Isr.J. Zool. 50, 255–271,  https://doi.org/10.1098/rspb.2009.2036.Google Scholar
  28. Laundré, J.W., Hernández, L., Ripple, W.J., 2010. The landscape of fear: ecological implications of being afraid. Open Ecol. J. 3, 1–7.Google Scholar
  29. Lima, J.R., Sampaio, E.V.S.B., Rodal, M.J.N., Araújo, F.S., 2007. Estrutura da floresta estacional decidual montana (mata seca) da RPPN Serra das Almas. Ceará. Rev. Bras. Biocienc. 5 (2), 438–440.Google Scholar
  30. Lima, J.R., Sampaio, E.V.S.B., Rodal, M.J.N., Araújo, F.S., 2009. Composição florística da floresta estacional decídua montana de Serra das Almas, CE, Brasil. Acta Bot. Bras 23 (3), 756–763,  https://doi.org/10.1590/S0102-33062009000300015.Google Scholar
  31. Lima, S.L., Dill, L.M., 1990. Behavioral decisions made underthe risk of predation: a review and prospectus. Can. J. Zool. 68, 619–640,  https://doi.org/10.1139/z90-092.Google Scholar
  32. Lucherini, M., Reppucci, J.I., Walker, R.S., Villalba, M.L., Wurstten, A., Gallardo, G., Iriarte, A., Villalobos, R., Perovic, P., 2009. Activity pattern segregation of carnivores in the high Andes. J. Mammal. 90 (6), 1404–1409,  https://doi.org/10.1644/09-MAMM-A-002R.1.Google Scholar
  33. Luttbeg, B., Rowe, L., Mangel, M., 2003. Prey state and experimental design affect relative size oftrait- and density-mediated indirect effects. Ecology 84, 1140–1150,  https://doi.org/10.1890/0012-9658(2003)084[1140:PSAEDA]2.0.CO;2.Google Scholar
  34. Maffei, L., Cuellar, E., Noss, J., 2002. Uso de trampas-cámara para la evaluación de mamíferos en el ecotono Chaco-Chiquitanía. Rev. Bol. Ecol. 11, 55–65.Google Scholar
  35. Maffei, L., Noss, A.J., Cuéllar, E., Rumiz, D.L., 2005. Ocelot (Felis pardalis) population densities, activity, and ranging behaviour in the dry forests of eastern Bolivia: data from camera trapping. J. Trop. Ecol. 21, 349–353,  https://doi.org/10.1017/S0266467405002397.Google Scholar
  36. Marinho, P.H., Bezerra, D., Antongiovanni, M., Fonseca, C.R., Venticinque, E.M., 2018. Activity patterns ofthe threatened northern tiger cat Leopardus tigrinus and its potential prey in a Brazilian dry tropical forest. Mamm. Biol. 89, 30–36,  https://doi.org/10.1016/j.mambio.2017.12.004.Google Scholar
  37. Meredith, M., Ridout, M., 2014. Overlap: estimates of coefficient of overlapping for animal activity patterns. R package version 0.2.4. Available at https://doi.org/CRAN.Rproject.org/package=overlap.Google Scholar
  38. Monterroso, P., Alves, P.C., Ferreras, P., 2014. Plasticity in circadian activity patterns of mesocarnivores in southwestern Europe: implications forspecies coexistence. Behav. Ecol. Sociobiol. 68, 1403–1417,  https://doi.org/10.1007/s00265-014-1748-1.Google Scholar
  39. Moreno, R.S., Kays, R.W., Samudio Jr., R., 2006. Competitive release in diets of ocelot (Leopardus pardalis) and puma (Puma concolor) after jaguar (Panthera onca) decline. J. Mammal. 87 (4), 808–816,  https://doi.org/10.1644/05-MAMM-A-360R2.1.Google Scholar
  40. Murray, J.L., Gardner, G.L., 1997. Leopardus pardalis. Mamm. Species 548, 1–10.Google Scholar
  41. Núñez, R., Miller, B., Lindzey, F., 2000. Food habits of jaguars and pumas inJalisco. Mexico. J. Zool. 252, 373–379,  https://doi.org/10.1111/j.1469-7998.2000.tb00632.x.Google Scholar
  42. Oliveira, L.O., Bonvicino, C.R., 2011. Ordem Rodentia. In: Reis, N.R., Peracchi, A.L., Pedro, W.A., Lima, I.P. (Eds.), Mamíferos do Brasil. Edição do Autor, Londrina, pp. 358–414.Google Scholar
  43. Oliveira, M.F., Carter, A.M., Bonatelli, M., Ambrosio, C.E., Miglino, M.A., 2006. Placentation in the rock cavy, Kerodon rupestris (Wied). Placenta 27, 87–97,  https://doi.org/10.1016/j.placenta.2004.11.012.PubMedGoogle Scholar
  44. Oliveira, T.G., Pereira, J.A., 2014. Intraguild predation and interspecific killing as structuring forces of carnivoran communities in South America. J. Mammal. Evol. 21, 427–436,  https://doi.org/10.1007/s10914-013-9251-4.Google Scholar
  45. Olmos, F., 1993. Notes on the food habits of Brazilian Caatinga carnivores. Mammalia 57, 126–130.Google Scholar
  46. Penido, G., Astete, S., Jácomo, A.T.A., Sollmann, R., Tôrres, N., Silveira, L., Marinho Filho,J., 2017. Mesocarnivore activity patterns in the semiarid Caatinga: limited by the harsh environment or affected by interspecifc interactions? J. Mammal. 98 (6), 1732–1740,  https://doi.org/10.1093/jmammal/gyx119.Google Scholar
  47. Pratas-Santiago, L.P., Gonçalves, A.L.S., da Maia Soares, A.M.V., Spironello, W.R., 2016. The moon cycle effect on the activity patterns of ocelots and their prey. J. Zool. 299, 275–283,  https://doi.org/10.1111/jzo.12359.Google Scholar
  48. Prugh, L.R., et al., 2009. The rise ofthe mesopredator. BioScience 59, 779–791,  https://doi.org/10.1525/bio.2009.59.9.9.Google Scholar
  49. Prugh, L.R., Golden, C.D., 2014. Does moonlight increase predation risk? Meta-analysis reveals divergent responses of nocturnal mammals to lunar cycles. J. Anim. Ecol. 83, 504–514,  https://doi.org/10.1111/1365-2656.12148.PubMedGoogle Scholar
  50. RCore Team, 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria https://doi.org/www.R-project.orgGoogle Scholar
  51. Ridout, M.S., Linkie, M., 2009. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 14, 322–327,  https://doi.org/10.1198/jabes.2009.08038.Google Scholar
  52. Sábato, M.A.L., Melo, L.F.B., Magni, E.M.V., Young, R.J., Coelho, C.M., 2006. A note on the effect ofthe full moon on the activity of wild maned wolves, Chrysocyon brachyurus. Behav. Process. 73, 228–230,  https://doi.org/10.1016/j.beproc.2006.05.012.Google Scholar
  53. Schmid, F., Schmidt, A., 2006. Nonparametric estimation ofthe coefficient of overlapping — theory and empirical application. Comput. Stat. Data Anal. 50, 1583–1596,  https://doi.org/10.1016/j.csda.2005.01.014.Google Scholar
  54. Schoener, T.W., 1974. Resource partitioning in ecological communities. Science 185, 27–39.PubMedGoogle Scholar
  55. Schwitzer, N., Kaumanns, W., Seitz, P.C., Schwitzer, C., 2007. Cathemeral activity patterns ofthe blue-eyed black lemur Eulemur macaco flavifrons in intact and degraded forest fragments. Endanger. Species Res. 3, 239–247.Google Scholar
  56. Scognamillo, D., Maxit, I.E., Sunquist, M., Polisar, J., 2003. Coexistence of jaguar (Panthera onca) and puma (Puma concolor) in a mosaic landscape in the Venezuelan Ilanos. J. Zool. 259, 269–279.Google Scholar
  57. Sih, A., 1984. The behavioral response race between predator and prey. Am. Nat. 123 (1), 143–150.Google Scholar
  58. Theuerkauf, J., Jędrzejewski, W., Schmidt, K., Okarma, H., Ruczynski, I., Śnieżko, S., Gula, R., 2003. Patterns and duration of wolf activity in the Białowieża Forest. Pol. J. Mammal. 84 (1), 243–253.Google Scholar
  59. Tiepolo, L.M., Tomas, W.M., 2011. Ordem Artiodactyla. In: Reis, N.R., Peracchi, A.L., Pedro, W.A., Lima, I.P. (Eds.), Mamíferos do Brasil. Edição do Autor, Londrina, pp. 293–313.Google Scholar
  60. White, A., Kerodon rupestris(On-line), Animal Diversity Web. https://doi.org/animaldiversity.org/accounts/Kerodon_rupestris/. (Online accessed 22 July 2016).Google Scholar
  61. Willig, M.R., Lacher Jr., T.E., 1991. Food selection of a tropical mammalian folivore in relation to leaf-nutrient content. J. Mammal. 72 (2), 314–321,  https://doi.org/10.2307/1382101.Google Scholar
  62. Zar, J.H., 2010. Biostatistical Analysis, 5th ed. Library of Congress Cataloging-in-Publication Data, 947p.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2018

Authors and Affiliations

  • Douglas de Matos Dias
    • 1
    Email author
  • Claudia Bueno de Campos
    • 2
  • Flávio Henrique Guimarães Rodrigues
    • 1
  1. 1.Programa de Pós-Graduação em Ecologia, Conservação e Manejo da Vida Silvestre, Departamento de Biologia GeralUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Instituto para a Conservação dos Carnívoros NeotropicaisAtibaiaBrazil

Personalised recommendations