Advertisement

Mammalian Biology

, Volume 92, Issue 1, pp 45–53 | Cite as

Large-scale assessment of the presence of Darwin’s fox across its newly discovered range

  • Eduardo A. Silva-RodríguezEmail author
  • Erwin Ovando
  • Danilo González
  • Brayan Zambrano
  • Maximiliano A. Sepúlveda
  • Gabriella L. Svensson
  • René Cárdenas
  • Patricio Contreras
  • Ariel A. FaríasEmail author
Article

Abstract

The Darwin’s fox is one of the most threatened carnivores worldwide and was thought to occur in only two isolated areas. Recently this canid was found in the Valdivian Coastal Range, between the previously known populations, but other than their presence, little is known about these populations. Here we report the results of camera trap surveys conducted between 2012 and 2016 (18,872 camera days), including surveys in 30 different sites—distributed along c. 400 km—and monitoring in two contiguous protected areas. Darwin’s fox detection rate was higher when forest cover was higher or when domestic dog (Canis familiaris) detection rate was lower. Given confirmed presence, the detection rate was higher for sites in Chiloé Island, than in the mainland’s Coastal Range. In mainland, we found evidence of dogs’ presence in most of the sites we detected Darwin’s foxes. In the protected areas monitored, Darwin’s foxes were found to use 12% and 15% of the area sampled in 2015 and 2016 respectively, although there was high uncertainty in the 2016 estimates due to low probability of detection. We did not detect Darwin’s foxes in forestry plantations. Our findings provide support for a continuous distribution along the mainland’s Coastal Range and Chiloé Island but we hypothesize—based on the major differences observed in detection rates between these areas—that local densities are lower in mainland than in Chiloé Island. Finally, Darwin’s fox appears to be sensitive to human disturbance and these disturbances, especially dogs, are ubiquitous within its newly discovered range.

Keywords

Camera trapping Lycalopex fulvipes Domestic dog Human disturbance Native forest Probability of detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acosta-Jamett, G., Surot, D., Cortés, M., Marambio, V., Valenzuela, C., Vallverdu, A., Ward, M.P., 2015. Epidemiology of canine distemper and canine parvovirus in domestic dogs in urban and rural areas of the Araucanía region in Chile. Vet. Microbiol. 178 (3), 260–264.PubMedGoogle Scholar
  2. Alexander, K.A., Appel, M.J., 1994. African wild dogs (Lycaon pictus) endangered by a canine distemper epizootic among domestic dogs near the Masai Mara National Reserve, Kenya. J. Wildl. Dis. 30 (4), 481–485.PubMedGoogle Scholar
  3. Austin, M., 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol. Model. 200 (1), 1–19.Google Scholar
  4. Barichivich, J., Thesis 2005. Muerte apical episódica en bosques de alerce (Fitzroya cupressoides [Mol.] Johnston) de la Cordillera de la Costa de Valdivia. Universidad Austral de Chile, Valdivia, Chile.Google Scholar
  5. Burnham, K.P., Anderson, D.R., 2002. Model selection and multimodel inference: A practical information-theoretical approach, second ed. Springer-Verlag, New York.Google Scholar
  6. Burton, A.C., Neilson, E., Moreira, D., Ladle, A., Steenweg, R., Fisher, J.T., Bayne, E., Boutin, S., 2015. Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 52 (3), 675–685.Google Scholar
  7. Cabello, J., Altet, L., Napolitano, C., Sastre, N., Hidalgo, E., Dávila, J.A., Millán, J., 2013. Survey of infectious agents in the endangered Darwin’s fox (Lycalopex fulvipes): High prevalence and diversity of hemotrophic mycoplasmas. Vet. Microbiol. 167, 448–454.PubMedGoogle Scholar
  8. Cade, B.S., Noon, B.R., 2003. A gentle introduction to quantile regression for ecologists. Front. Ecol. Environ. 1 (8), 412–420.Google Scholar
  9. Carbone, C., Christie, S., Conforti, K., Coulson, T., Franklin, N., Ginsberg, J.R., Griffiths, M., Holden, J., Kawanishi, K., Kinnaird, M., Laidlaw, R., Lynam, A., Macdonald, D.W., Martyr, D., MacDougal, C., Nath, L., O’Brien, T., Seidensticker, J., Smith, D.J.L., Sunquist, M., Tilson, R., Shahruddin, W.N., 2001. The use of photographic rates to estimate densities of tigers and other cryptic mammals. Anim. Conserv. 4 (01), 75–79.Google Scholar
  10. Cofre, H., Marquet, P.A., 1999. Conservation status, rarity, and geographic priorities for conservation of Chilean mammals: an assessment. Biol. Conserv. 8 (1), 53–68.Google Scholar
  11. CONAF, 2014. Plan de Manejo Parque Nacional Alerce Costero. Documento Operativo. Departamento de Planificación y Desarrollo, Gerencia de Áreas Silvestres Protegidas, Corporación Nacional Forestal (CONAF), Chile.Google Scholar
  12. D’Elía, G., Ortloff, A., Sánchez, P., Guin˜ez, B., Varas, V., 2013. A new geographic record of the endangered Darwin’s fox Lycalopexfulvipes (Carnivora: Canidae): filling the distributional gap. Rev. Chil. Hist. Nat. 86, 485–488.Google Scholar
  13. Echeverría, C., Newton, A., Nahuelhual, L., Coomes, D., Rey-Benayas, J.M., 2012. How landscapes change: integration of spatial patterns and human processes in temperate landscapes of southern Chile. Appl. Geogr. 32 (2), 822–831.Google Scholar
  14. Efford, M.G., Dawson, D.K., 2012. Occupancy in continuous habitat. Ecosphere 3 (4), 1–15.Google Scholar
  15. Farias, A.A., Jaksic, F.M., 2011. Low functional richness and redundancy of a predator assemblage in native forest fragments of Chiloe Island, Chile. J. Anim. Ecol. 80 (4), 809–817.PubMedGoogle Scholar
  16. Farías, A.A., Sepúlveda, M.A., Silva-Rodríguez, E.A., Eguren, A., González, D., Jordán, N.I., Ovando, E., Stowhas, P., Svensson, G.L., 2014. A new population of Darwin’s fox (Lycalopexfulvipes) in the Valdivian Coastal Range. Rev. Chil. Hist. Nat. 87 (3),  https://doi.org/10.1186/0717-6317-87-3.
  17. Foundations of Success, 2009. Conceptualizing and planning conservation projects and programs: a training manual. Foundations of Success, Bethesda, Maryland.Google Scholar
  18. Fox, J., 2005. The R commander: a basic statistics graphical user interface to R. J. Stat. Softw. 14 (9), 1–42.Google Scholar
  19. Gálvez, N., Guillera-Arroita, G., Morgan, B.J., Davies, Z.G., 2016. Cost-efficient effort allocation for camera-trap occupancy surveys of mammals. Biol. Conserv. 204, 350–359.Google Scholar
  20. Goller, K.V., Fyumagwa, R.D., Nikolin, V., East, M.L., Kilewo, M., Speck, S., Wibbelt, G., 2010. Fatal canine distemper infection in a pack of African wild dogs in the Serengeti ecosystem, Tanzania. Vet. Microbiol. 146 (3), 245–252.PubMedGoogle Scholar
  21. Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, C.O., Townshend,J.R.G., 2013. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853.PubMedGoogle Scholar
  22. Hines, J.E., 2006. PRESENCE2 - Software to estimate patch occupancy and related parameters. USGS-PWRC https://doi.org/www.mbr-pwrc.usgs.gov/software/presence.html.Google Scholar
  23. Jennelle, C.S., Runge, M.C., MacKenzie, D.I., 2002. The use of photographic rates to estimate densities of tigers and other cryptic mammals: a comment on misleading conclusions. Anim. Conserv. 5 (2), 119–120.Google Scholar
  24. Jiménez, J.E., 2007. Ecology of a coastal population of the critically endangered Darwin’s fox (Pseudalopex fulvipes) on Chiloé Island, southern Chile. J. Zool. 271 (1), 63–77.Google Scholar
  25. Jiménez, J.E., McMahon, E., 2004. Pseudalopex fulvipes. In: Sillero-Zubiri, C., Hoffmann, M., Macdonald, D.W. (Eds.), Canids: Foxes, Wolves, Jackals and Dogs. Status survey and conservation action plan. IUCN/SSC Canid Specialist Group, Gland, Switzerland and Cambridge, UK, pp. 50–55.Google Scholar
  26. Koenker, R., 2016. Quantreg: Quantile Regression. R package version 5.29. https://doi.org/www.CRAN.R-project.org/package=quantreg.Google Scholar
  27. Little, C., Lara, A., 2010. Restauración ecológica para aumentar la provisión de agua como un servicio ecosistémico en cuencas forestales del centro-sur de Chile. Bosque 31 (3), 175–178.Google Scholar
  28. Little, C., Cuevas,J.G., Lara, A., Pino, M., Schoenholtz, S., 2015. Buffer effects of streamside native forests on water provision in watersheds dominated by exotic forest plantations. Ecohydrology 8 (7), 1205–1217.Google Scholar
  29. Mackenzie, D.I., 2006. Modeling the probability of resource use: the effect of, and dealing with, detecting a species imperfectly. J. Wildl. Manage. 70(2), 367–374.Google Scholar
  30. MacKenzie, D.I., Nichols, J.D., 2004. Occupancy as a surrogate for abundance estimation. Anim. Biodivers. Conserv. 27 (1), 461–467.Google Scholar
  31. MacKenzie, D.I., Nichols, J.D., Lachman, G.B., Droege, S., Andrew Royle, J., Langtimm, C.A., 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83 (8), 2248–2255.Google Scholar
  32. Martin, W., 1837. Observations upon a new fox from Mr. Darwin’s collection (Vulpes fulvipes). P. Zool. Soc. Lond. 5, 11–12.Google Scholar
  33. Miranda, A., Altamirano, A., Cayuela, L., Pincheira, F., Lara, A., 2015. Different times, same story: native forest loss and landscape homogenization in three physiographical areas of south-central of Chile. Appl. Geogr. 60, 20–28.Google Scholar
  34. Moreira-Arce, D., Vergara, P.M., Boutin, S., 2015. Diurnal human activity and introduced species affect occurrence of carnivores in a human-dominated landscape. Plos One 10 (9), e0137854.PubMedPubMedCentralGoogle Scholar
  35. Moreira-Arce, D., Vergara, P.M., Boutin, S., Carrasco, G., Briones, R., Soto, G.E., Jiménez, J.E., 2016. Mesocarnivores respond to fine-grain habitat structure in a mosaic landscape comprised by commercial forest plantations in southern Chile. For. Ecol. Manag. 369, 135–143.Google Scholar
  36. Moses, L.E., 2005. Wilcoxon-Mann-Whitney test. In: Encyclopedia of Biostatistics.,  https://doi.org/10.1002/0470011815.b2a15178.Google Scholar
  37. O’Brien, T.G., Kinnaird, M.F., Wibisono, H.T., 2003. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. 6, 131–139.Google Scholar
  38. Otavo, S., Echeverría, C., 2017. Fragmentación progresivay pérdida de hábitat de bosques naturales en uno de los hotspot mundiales de biodiversidad. Rev. Mex. Biodivers. 88, 924–935,  https://doi.org/10.1016/j.rmb.2017.10.041.Google Scholar
  39. RCore Team, 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria https://doi.org/www.R-project.org/.Google Scholar
  40. Rabinowitz, D., 1981. Seven forms of rarity. In: Synge, H. (Ed.), The Biological Aspects of Rare Plant Conservation. John Wiley and Sons, Chichester, UK, pp. 205–217.Google Scholar
  41. Rovero, F., Marshall, A.R., 2009. Camera trapping photographic rate as an index of density in forest ungulates. J. Appl. Ecol. 46 (5), 1011–1017.Google Scholar
  42. Rovero, F., Zimmermann, F., Berzi, D., Meek, P., 2013. Which camera trap type and how many do I need? A review of camera features and study designs for a range of wildlife research applications. Hystrix 24 (2), 148–156.Google Scholar
  43. Sanderson, J., Harris, G., 2013. Automatic data organization, storage, and analysis of camera trap pictures. J. Indonesian Nat. Hist. 1 (1), 11–19.Google Scholar
  44. Sepúlveda, M.A., Singer, R.S., Silva-Rodríguez, E.A., Eguren, A., Stowhas, P., Pelican, K., 2014. Invasive American mink: linking pathogen risk between domestic and endangered carnivores. EcoHealth 11 (3), 409–419.PubMedGoogle Scholar
  45. Sepúlveda, M.A., Pelican, K., Cross, P., Eguren, A., Singer, R.S., 2015. Fine-scale movements of rural free-ranging dogs in conservation areas in the temperate rainforest of the coastal range of southern Chile. Mamm. Biol. 80, 290–297.Google Scholar
  46. Silva-Rodríguez, E.A., Sieving, K.E., 2012. Domestic dogs shape the landscape-scale distribution of a threatened forest ungulate. Biol. Conserv. 150(1), 103–110.Google Scholar
  47. Silva-Rodríguez, E.A., Soto-Gamboa, M., Ortega-Solís, G.R., Jiménez, J.E., 2009. Foxes, people and hens: human dimensions of a conflict in a rural area of southern Chile. Rev. Chil. Hist. Nat. 82, 375–386.Google Scholar
  48. Silva-Rodríguez, E.A., Ortega-Solís, G.R., Jimenez, J.E., 2010. Conservation and ecological implications of the use of space by chilla foxes and free-ranging dogs in a human-dominated landscape in southern Chile. Aust. Ecol. 35, 765–777.Google Scholar
  49. Silva-Rodríguez, E.A., Sepúlveda, M.A., Duarte, C., Stowhas, P., García-Vera, C., Cruz, E., Travieso, G., Zorondo-Rodríguez, F., Alfonso, A., Godoy, M., Andrade, A., Osman, L., Pezoa, L., Zamorano, S., Poveda, P., Almonacid, A., 2015a. Plan de Manejo, Reserva Costera Valdiviana. The Nature Conservancy, Valdivia, Chile.Google Scholar
  50. Silva-Rodríguez, E.A., Sepúlveda, M., Duarte, C., Cruz, E., Travieso, G., Zorondo-Rodríguez, F., Alfonso, A., Norambuena, H., Godoy, M., Andrade, A., Osman, L., Pezoa, L., Zamorano, S., Poveda, P., Almonacid, A., 2015b. Plan de Monitoreo Reserva Costera Valdiviana 2015–2020. The Nature Conservancy, Valdivia, Chile.Google Scholar
  51. Silva-Rodríguez, E., Farias, A., Moreira-Arce, D., Cabello, J., Hidalgo-Hermoso, E., Lucherini, M., Jiménez, J., 2016. Lycalopex fulvipes. In: The IUCN Red List of Threatened Species 2016: e.T41586A70871, Accessed 05 July 2016.Google Scholar
  52. Smith-Ramírez, C., 2004. The Chilean coastal range: a vanishing center of biodiversity and endemism in South American temperate rainforests. Biodiv. Conserv. 13 (2), 373–393.Google Scholar
  53. Smith-Ramírez, C., González, M.E., Echeverría, C., Lara, A., 2015. Estado actual de la Restauración ecológica en Chile, perspectivas y desafíos. An. Inst. Patagonia 43, 11–21.Google Scholar
  54. Stowhas, P., 2012. Análisis del conflicto entre carnívoros silvestres y campesinos en el sur de Chile. Thesis. Universidad Mayor, Santiago de Chile, Chile.Google Scholar
  55. Sollmann, R., Mohamed, A., Samejima, H., Wilting, A., 2013. Risky business or simple solution - relative abundance indices from camera-trapping. Biol. Conserv. 159, 405–412.Google Scholar
  56. Timm, S.F., Munson, L., Summers, B.A., Terio, K.A., Dubovi, E.J., Rupprecht, C.E., Kapil, S., Garcelon, D.K., 2009. A suspected canine distemper epidemic as the cause of a catastrophic decline in Santa Catalina Island foxes (Urocyon littoralis catalinae). J. Wildl. Dis. 45 (2), 333–343.PubMedGoogle Scholar
  57. Vanak, A.T., Gompper, M.E., 2010. Interference competition at the landscape level: the effect of free-ranging dogs on a native mesocarnivore. J. Appl. Ecol. 47 (6), 1225–1232.Google Scholar
  58. Vilà, C., Leonard, J.A., Iriarte, A., O’Brien, S.J., Johnson, W.E., Wayne, R.K., 2004. Detecting the vanishing populations of the highly endangered Darwin’s fox, Pseudalopex fulvipes. Anim. Conserv. 7 (2), 147–153.Google Scholar
  59. Yu, J., Dobson, F.S., 2000. Seven forms of rarity in mammals. J. Biogeogr. 27 (1), 131–139.Google Scholar
  60. Zamorano-Elgueta, C., Benayas, J.M.R., Cayuela, L., Hantson, S., Armenteras, D., 2015. Native forest replacement by exotic plantations in southern Chile (1985–2011) and partial compensation by natural regeneration. For. Ecol. Manag. 345, 10–20.Google Scholar
  61. Zar, J.H., 2005. Spearman rank correlation. In: Encyclopedia of Biostatistics.,  https://doi.org/10.1002/0470011815.b2a15150.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2018

Authors and Affiliations

  • Eduardo A. Silva-Rodríguez
    • 1
    • 2
    Email author
  • Erwin Ovando
    • 3
  • Danilo González
    • 3
  • Brayan Zambrano
    • 4
  • Maximiliano A. Sepúlveda
    • 5
  • Gabriella L. Svensson
    • 5
  • René Cárdenas
    • 6
  • Patricio Contreras
    • 6
  • Ariel A. Farías
    • 7
    • 8
    • 9
    • 10
    Email author
  1. 1.Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos NaturalesUniversidad Andrés BelloSantiagoChile
  2. 2.Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos NaturalesUniversidad Austral de ChileValdiviaChile
  3. 3.Reserva Costera ValdivianaThe Nature ConservancyIsla Teja, ValdiviaChile
  4. 4.Escuela de Medicina Veterinaria, Facultad de Ecología y Recursos NaturalesUniversidad Andrés BelloSantiagoChile
  5. 5.Gerencia de Áreas Silvestres Protegidas del EstadoCorporación Nacional ForestalSantiagoChile
  6. 6.Parque Nacional Alerce Costero, Departamento de Áreas Silvestres ProtegidasCorporación Nacional Forestal, Provincia de ValdiviaValdiviaChile
  7. 7.Centro Universitario Regional Este (CURE-Maldonado)Universidad de la RepúblicaMaldonadoUruguay
  8. 8.Centro de Ecología Aplicada y Sustentabilidad (CAPES)Pontificia Universidad Católica de ChileSantiagoChile
  9. 9.Centro de Investigación e Innovación para el Cambio Climático (CIICC)Universidad Santo TomásSantiagoChile
  10. 10.Centro Universitario Regional Este (CURE-Maldonado)Universidad de la RepúblicaMaldonadoUruguay

Personalised recommendations