Advertisement

Mammalian Biology

, Volume 87, Issue 1, pp 176–184 | Cite as

Comparison of diet and prey selectivity of the Pyrenean desman and the Eurasian water shrew using next-generation sequencing methods

  • Marjorie BiffiEmail author
  • Pascal Laffaille
  • Jérémy Jabiol
  • Adrien André
  • François Gillet
  • Sylvain Lamothe
  • Johan R. Michaux
  • Laëtitia Buisson
Original investigation

Abstract

In this study, the interactions between two semi-aquatic mammals, the endangered Pyrenean desman Galemys pyrenaicus and the Eurasian water shrew Neomysfodiens, were investigated through the analysis of their summer diet using next-generation sequencing methods, combined with analyses of prey selectivity and trophic overlap. The diet of these predators was highly diverse including 194 and 205 genera for G. pyrenaicus and N. fodiens respectively. Overall, both species exhibited rather non-selective foraging strategies as the most frequently consumed invertebrates were also the most frequent and abundant in the streams. This supported a generalist foraging behaviour for G. pyrenaicus and N. fodiens in the study area. The Pianka index (0.4) indicated a significant but moderate dietary overlap as G. pyrenaicus mostly relied on prey with aquatic stages whereas prey of N. fodiens were mainly terrestrial. Moreover, no difference in G. pyrenaicus prey consumption was found in presence or absence of N. fodiens. A differential use of trophic resources through mechanisms such as plastic feeding behaviour or differences in foraging micro-habitat are likely to facilitate the coexistence between these two mammal species.

Keywords

COI Dietary overlap Foraging strategy Scat analyses Semi-aquatic mammal 

Abbreviations

FOdiet

frequency of occurrence of invertebrate taxa in the predator diet (number of faeces containing the taxon divided by the total number of predator faeces)

FOstream

frequency of occurrence of invertebrate taxa in the streams (number of Surber samples with the taxa divided by the total number of Surber samples collected in the study sites).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams, P., 1980. Some comments on measuring niche overlap. Ecology 61, 44–49.CrossRefGoogle Scholar
  2. André, A., Mouton, A., Millien, V., Michaux, J., 2017. Liver microbiome of Peromyscus leucopus, a key reservoir host species for emerging infectious diseases in North America. Infect. Genet. Evol. 52, 10–18.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Aymerich, P., Gosàlbez, J., 2015. Evidencias de regresión local del desmán ibérico (Galemys pyrenaicus) en los Pirineos meridionales. Galemys 27, 31–40.CrossRefGoogle Scholar
  4. Aymerich, P., Gosálbez, J., 2004. La prospección de excrementos como metodología para el estudio de la distribución de los musgaños (Neomys sp.). Galemys 16, 83–90.Google Scholar
  5. Bertrand, A., 1994. Répartition géographique et écologie alimentaire du desman des Pyrénées, Galemys pyrenaicus (Geoffroy, 1811) dans les Pyrénées francaises. Thèse de doctorat. Université Paul Sabatierde Toulouse (50pp).Google Scholar
  6. Biffi, M., Charbonnel, A., Buisson, L., Blanc, F., Némoz, M., Laffaille, P., 2016. Spatial differences across the French Pyrenees in the use of local habitat by the endangered semi-aquatic Pyrenean desman (Galemys pyrenaicus). Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 761–774.CrossRefGoogle Scholar
  7. Biffi, M., Gillet, F., Laffaille, P., Colas, F., Aulagnier, A., Blanc, F., Galan, M., Tiouchichine, M.L., Némoz, M., Buisson, L., Michaux, J.R., 2017. Novel insights into the diet of the Pyrenean desman (Galemys pyrenaicus) using next-generationsequencing molecularanalyses.J. Mammal., http://dx.doi.org/ 10.1093/jmammal/gyx070.Google Scholar
  8. Brown, L.E., Milner, A.M., Hannah, D.M., 2006. Stability and persistence of alpine stream macroinvertebrate communities and the role of physicochemical habitat variables. Hydrobiologia 560, 159–173.CrossRefGoogle Scholar
  9. Cantoni, D., 1993. Social and spatial organization of free-ranging shrews, Sorex coronatus and Neomys fodiens (Insectivora, Mammalia). Anim. Behav. 45, 975–995.CrossRefGoogle Scholar
  10. Castién, E., Gosálbez, J., 1995. Diet of Galemys pyrenaicus (Geoffroy, 1811) in the North of the Iberian peninsula. Neth. J. Zool. 45, 422–430.Google Scholar
  11. Castién, E., Gosálbez, J., 1999. Habitat and food preferences inaguild of insectivorous mammals in the Western Pyrenees. ActaTheriol. 44, 1–13.Google Scholar
  12. Charbonnel, A., D’Amico, F., Besnard, A., Blanc, F., Buisson, L., Némoz, M., Laffaille, P., 2014. Spatial replicates as an alternative to temporal replicates for occupancy modelling when surveys are based on linear features of the landscape. J. Appl. Ecol. 51, 1425–1433.CrossRefGoogle Scholar
  13. Charbonnel, A., Buisson, L., Biffi, M., D’Amico, F., Besnard, A., Aulagnier, S., Blanc, F., Gillet, F., Lacaze, V., Michaux, J.R., Némoz, M., Pagé, C., Sanchez-Perez, J.M., Sauvage, S., Laffaille, P., 2015. Integrating hydrological features and genetically validated occurrence data in occupancy modelling of an endemic and endangered semi-aquatic mammal, Galemys pyrenaicus, in a Pyrenean catchment. Biol. Conserv. 184, 182–192.CrossRefGoogle Scholar
  14. Charbonnel, A., Laffaille, P., Biffi, M., Blanc, F., Maire, A., Némoz, M., Sanchez-Perez, J.M., Sauvage, S., Buisson, L., 2016. Can recent global changes explain the dramatic range contraction of an endangered semi-aquatic mammal species in the French Pyrenees? PLoS One 11, e0159941.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Churchfield, S., Rychlik, L., 2006. Diets and coexistence in Neomys and Sorex shrews in Białowieża forest, eastern Poland. J. Zool. 269, 381–390.CrossRefGoogle Scholar
  16. Churchfield, S., Sheftel, B.I., 1994. Food niche overlap and ecological separation in a multi-species community of shrews in the Siberian taiga.J. Zool. 234, 105–124.CrossRefGoogle Scholar
  17. Churchfield, S., Nesterenko, V.A., Shvarts, E.A., 1999. Food niche overlap and ecological separation amongst six species of coexisting forest shrews (Insectivora: soricidae) in the Russian Far East.J. Zool. 248, 349–359.CrossRefGoogle Scholar
  18. Churchfield, S., 1984. An investigation of the population ecology of syntopic shrews inhabiting water-cress beds. J. Zool. Lond. 204, 229–240.CrossRefGoogle Scholar
  19. Churchfield, S., 1985. The feeding ecology of the European watershrew. Mammal Rev. 15, 13–21.CrossRefGoogle Scholar
  20. Clare, E.L., Symondson, W.O.C., Broders, H., Fabianek, F., Fraser, E.E., MacKenzie, A., Boughen, A., Hamilton, R., Willis, C.K.R., Martinez-Nuñez, F., Menzies, A.K., Norquay, K.J.O., Brigham, M., Poissant, J., Rintoul, J., Barclay, R.M.R., Reimer, J.P., 2014. The diet of Myotis lucifugus across Canada: assessing foraging quality and diet variability. Mol. Ecol. 23, 3618–3632.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Costa, A., Salvidio, S., Posillico, M., Matteucci, G., De Cinti, B., Romano, A., 2015. Generalisation within specialization: inter-individual diet variation in the only specialized salamander in the world. Sci. Rep. 5, 13260.Google Scholar
  22. DuPasquier, A., Cantoni, D., 1992. Shifts in benthic macroinvertebrate community and food habits of water shrew, Neomys fodiens (Soricidae, Insectivora). Acta OEcologica OEcal. Gener. 13, 81–99.Google Scholar
  23. Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z.I., Knowler, D.J., Lévêque, C., Naiman, R.J., Prieur-Richard, A.H., Soto, D., Stiassny, M.L.J., Sullivan, C.A., 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Edgar, R.C., 2010. Search and clustering orders of magnitude fasterthan BLAST. Bioinforma. Oxf. Engl. 26, 2460–2461.CrossRefGoogle Scholar
  25. Escoda, L., González-Esteban, J., Gómez, A., Castresana, J., 2017. Using relatedness networks to infer contemporary dispersal: application to the endangered mammal Galemys pyrenaicus. Mol. Ecol., http://dx.doi.org/10.1111/mec. 14133.Google Scholar
  26. Füreder, L., Wallinger, M., Burger, R., 2004. Longitudinal and seasonal pattern of insect emergence in alpine streams. Aquat. Ecol. 39, 67–78.CrossRefGoogle Scholar
  27. Fernandes, M., Herrero, J., Aulagnier, S., Amori, G., 2008. Galemys Pyrenaicus. The IUCN Red List of Threatened Species. Version 2014.2 (<www.iucnredlist.org>; Downloaded on 1 June 2014) http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS. T8826A12934876.en.Google Scholar
  28. Finn, D.S., Khamis, K., Milner, A.M., 2013. Loss of small glaciers will diminish beta diversity in Pyrenean streams at two levels of biological organization. Glob. Ecol. Biogeogr. 22, 40–51.CrossRefGoogle Scholar
  29. Giller, P., Greenberg, L., 2015. The relationship between individual habitat use and diet in brown trout. Freshw. Biol. 60, 256–266.CrossRefGoogle Scholar
  30. Gillet, F., Tiouchichine, M.L., Galan, M., Blanc, F., Némoz, M., Aulagnier, S., Michaux, J.R., 2015. A new method to identify the endangered Pyrenean desman (Galemys pyrenaicus) and to study its diet, using next generation sequencing from faeces. Mamm. Biol. 80, 505–509.CrossRefGoogle Scholar
  31. Gillet, F., 2015. Génétique et biologie de la conservation du desman des Pyrénées (Galemys pyrenaicus) en France. Thèse de doctorat, Université Paul Sabatier de Toulouse (France)/Université de Liège (Belgique), 228pp.Google Scholar
  32. Gisbert, J., García-Perea, R., 2014. Historiade la regresióndel desmán ibérico Galemys pyrenaicus (É. Geoffroy Saint-Hilaire, 1811) enel Sistema Central (Península Ibérica). Conservation and management of semi-aquatic mammals of southwestern Europe. Munibe Monogr. Nat. Ser., 3., pp. 19–35.CrossRefGoogle Scholar
  33. Greenwood, A., Churchfield, S., Hickey, C., 2002. Geographical distribution and habitat occurrence of the water shrew (Neomys fodiens) in the Weald of South-East England. Mammal Rev. 32, 40–50.CrossRefGoogle Scholar
  34. Haberl, W., 2002. Food storage, prey remains and notes on occasional vertebrates in the diet of the Eurasian watershrew, Neomys fodiens. Folia Zool. 51, 93–102.Google Scholar
  35. Harrington, L.A., Harrington, A.L., Yamaguchi, N., Thom, M.D., Ferreras, P., Windham, T.R., Macdonald, D.W., 2009. The impact of native competitors on an alien invasive: temporal niche shifts to avoid interspecific aggression? Ecology 90, 1207–1216.PubMedPubMedCentralGoogle Scholar
  36. Hutchinson, G.E., 1957. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427.CrossRefGoogle Scholar
  37. Ivlev, V.S., 1961. Experimental Ecology of Feeding Fishes. Yale University Press, New Haven, Connecticut (302 pp).Google Scholar
  38. Keckel, M.R., Ansorge, H., Stefen, C., 2014. Differences in the microhabitat preferences of Neomys fodiens (Pennant 1771) and Neomys anomalus Cabrera 1907 in Saxony. Germany. Acta Theriol. 59, 485–494.CrossRefGoogle Scholar
  39. Klare, U., Kamler, J.F., Macdonald, D.W., 2011. A comparison and critique of different scat-analysis methods fordetermining carnivore diet. Mammal Review 41, 294–312.CrossRefGoogle Scholar
  40. Krüger, F., Clare, E.L., Greif, S., Siemers, B.M., Symondson, W.O.C., Sommer, R.S., 2014. An integrative approach to detect subtle trophic niche differentiation in the sympatric trawling bat species Myotis dasycneme and Myotis daubentonii. Mol. Ecol. 23, 3657–3671.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Lardet, J.-P., 1988. Spatial behaviourand activity patterns of the watershrew Neomys fodiens in the field. Acta Theriol. 33, 293–303.CrossRefGoogle Scholar
  42. Life+ Desman, 2013. Technical Application Forms - Conservation of the French Populations of Galemys Pyrenaicus and Its Populations on the French Pyrénées (LIFE13 NAT/FR/000092). 274 p.Google Scholar
  43. McLachlan-Troup, T.A., Dickman, C.R., Grant, T.R., 2010. Diet and dietary selectivity of the platypus in relationtoseason, sex and macroinvertebrate assemblages.J. Zool. 280, 237–246.CrossRefGoogle Scholar
  44. Melero, Y., Aymerich, P., Luque-Larena, J.J., Gosálbez, J., 2012. New insights into social and space use behaviour of the endangered Pyrenean desman (Galemys pyrenaicus). Eur.J. Wildl. Res. 58, 185–193.CrossRefGoogle Scholar
  45. Melero, Y., Aymerich, P., Santulli, G., Gosálbez, J., 2014. Activity and space patterns of Pyrenean desman (Galemys pyrenaicus) suggest non-aggressive and non-territorial behaviour. Eur.J. Wildl. Res. 60, 707–715.CrossRefGoogle Scholar
  46. Mendes-Soares, H., Rychlik, L., 2009. Differences in swimming and diving abilities between two sympatric species of water shrews: Neomys anomalus and Neomys fodiens (Soricidae). J. Ethol. 27, 317–325.CrossRefGoogle Scholar
  47. Morueta-Holme, N., Fløjgaard, C., Svenning, J.-C, 2010. Climate change risks and conservation implications for a threatened small-range mammal species. PLoS One 5, e10360.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Muséum national d’Histoire naturelle [Ed]. 2003-2017. Inventaire National du Patrimoine Naturel. https://inpn.mnhn.fr. Accessed 15 May 2016.Google Scholar
  49. Némoz, M., Bertrand, A., Sourie, M., Arlot, P., 2011. A french conservation action plan for the pyrenean desman Galemys pyrenaicus. Galemys 23, 47–50.Google Scholar
  50. OPIE-Benthos, 2017. Office Pour les Insectes et leur Environnement (http://www.opie-benthos.fr/opie/insecte.php. Accessed 15 May 2016).Google Scholar
  51. Palmeirim, J.M., 1983. Galemys pyrenaicus. Mamm. Species 207, 1–5.CrossRefGoogle Scholar
  52. Parry, G.S., Bodger, O., McDonald, R.A., Forman, D.W., 2013. A systematic re-sampling approach to assess the probability of detecting otters Lutra lutra using spraint surveys on small lowland rivers. Ecol. Inform. 14, 64–70 (The analysis and application of spatial ecological data to support the conservation of biodiversity).CrossRefGoogle Scholar
  53. Pianka, E.R., 1973. The structure of lizard communities. Annu. Rev. Ecol. Syst. 4, 53–74.CrossRefGoogle Scholar
  54. Pianka, E.R., 1974. Niche overlap and diffuse competition. Proc. Natl. Acad. Sci. 71, 2141–2145.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Pompanon, F., Deagle, B.E., Symondson, W.O.C., Brown, D.S., Jarman, S.N., Taberlet, P., 2012. Who is eating what: diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950.PubMedCrossRefGoogle Scholar
  56. Puisségur, C., 1935. Recherches sur le Desman des Pyrénées. Bull. Soc. Hist. Nat. Toulouse 67, 163–227.Google Scholar
  57. RCore Team, 2014. R: A Language and Environment forStatistical Computing. R Foundation for Statistical Computing, Vienna, Austria http://www.R-project.org/.Google Scholar
  58. Ratnasingham, S., Hebert, P.D.N., 2007. BOLD: the barcode of life data system (www.barcodinglife.org). Mol. Ecol. Notes 7, 355–364.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Richard, P.B., Micheau, C., 1975. Le carrefourtrachéen dans l’adaptation du desman des Pyrénées (Galemys pyrenaicus) à la vie dulcaquicole. Mammalia 39, 467–478.Google Scholar
  60. Rychlik, L., 1997. Differences in foraging behaviour between water shrews: Neomys anomalus and Neomys fodiens. Acta Theriol. 42, 351–386.CrossRefGoogle Scholar
  61. Rychlik, L., 2000. Habitat preferences offour sympatric species of shrews. Acta Theriol. 45 (Suppl. 1), 173–190.Google Scholar
  62. Santamarina, J., Guitian, J., 1988. Quelques données sur le régime alimentaire du desman (Galemys pyrenaicus) dans le nord-ouest de l’Espagne. Mammalia 52, 302–307.CrossRefGoogle Scholar
  63. Santamarina, J., 1993. Feeding ecology of a vertebrate assemblage inhabiting a stream of NWSpain(Riobo; Ullabasin). Hydrobiologia 252, 175–191.CrossRefGoogle Scholar
  64. Sheppard, S.K., Bell, J., Sunderland, K.D., Fenlon, J., Skervin, D., Symondson, W.O.C., 2005. Detection ofsecondary predation by PCR analyses of the gut contents of invertebrate generalist predators. Mol. Ecol. 14, 4461–4468.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Stone, R.D., 1987. The activity patterns of the Pyrenean desman (Galemys pyrenaicus) (Insectivora: talpidae), as determined under natural conditions. J. Zool. 213, 95–106.CrossRefGoogle Scholar
  66. Tachet, H., Richoux, P., Bournaud, M., Usseglio-Polatera, P., 2000. Invertébrés d’eau douce. Systématique, Biologie, Ecologie, CNRS Editions, Paris.Google Scholar
  67. Valeix, M., Chamaillé-Jammes, S., Fritz, H., 2007. Interference competition and temporal niche shifts: elephants and herbivore communities at waterholes. Oecologia 153, 739–748.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Wisz, M.S., Pottier, J., Kissling, W.D., Pellissier, L., Lenoir, J., Damgaard, C.F., Dormann, C.F., Forchhammer, M.C., Grytnes, J.A., Guisan, A., Heikkinen, R.K., Høye, T.T., Kühn, I., Luoto, M., Maiorano, L., Nilsson, M.-C, Normand, S., Öckinger, E., Schmidt, N.M., Termansen, M., Timmermann, A., Wardle, D.A., Aastrup, P., Svenning, J.-C, 2013. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol. Rev. 88, 15–30.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde, e. V. DGS 2017

Authors and Affiliations

  • Marjorie Biffi
    • 1
    Email author
  • Pascal Laffaille
    • 1
  • Jérémy Jabiol
    • 1
  • Adrien André
    • 2
  • François Gillet
    • 2
  • Sylvain Lamothe
    • 1
  • Johan R. Michaux
    • 2
    • 3
  • Laëtitia Buisson
    • 1
  1. 1.EcoLabUniversité de Toulouse, CNRS, INPT, UPSToulouse cedex 9France
  2. 2.Laboratoire de Biologie Evolutive, Unité de Génétique de la ConservationLiègeBelgium
  3. 3.CIRAD, Agirs UnitMontpellier Cedex 5France

Personalised recommendations