Advertisement

Mammalian Biology

, Volume 87, Issue 1, pp 152–159 | Cite as

Factors affecting the selection of and displacement within core areas by female mule deer (Odocoileus hemionus) in the Chihuahuan Desert, Mexico

  • Luz Adriana Pérez-SolanoEmail author
  • Luis M. García-Feria
  • Sonia Gallina-Tessaro
Original investigation

Abstract

Core activity areas are the most important sites within an animal’s home range as they contain the greatest density of critical resources. Because these areas are small and intensively used, they can affect the total distances covered by animals searching for resources. Our objective was to document which habitat variables affect core area selection by female mule deer (Odocoileus hemionus) in an arid environment, and to learn which variables affect their displacement within these areas. Using radiotelemetry, from 2012 to 2014 we monitored seven female mule deer. We estimated their core areas, and with this information we identified and classified the location records as inside or outside of the core area. For each record, we also recorded variables related to time (month, time of day), environmental conditions (temperature, relative humidity), and habitat characteristics (plant association, distance to the nearest water body, slope), and used them to predict the presence of the deer in the core area using Classification and Regression Trees (CART). The same variables were analyzed using a GLM to determine which factors explain variations in displacement distance. The most important variable in core area selection was the distance to the nearest body of water (<933.71 m at the population level and <1375.11 m on average for individual deer), followed by two plant associations that included the dominant species Prosopis glandulosa, Pleuraphis mutica, Larrea tridentata, Opuntia rastrera and Fouquieria splendens in areas with a gentle slope or none. Displacement distances within the core area were shorter than those outside and were affected by time of day and month. Our results are the first to elucidate the use of the core area by female mule deer in the Chihuahuan Desert, and allow us to start understanding the connection between the habitat resources essential to the survival of these deer and their movement under desert conditions.

Keywords

Biosphere reserve Habitat Home range core area Movement Water availability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ager, A.A., Johnson, B.K., Kern, J.W., Kie, J.G., 2003. Daily and seasonal movements and habitat use by female Rocky Mountain elk and mule deer. J. Mammal. 84, 1076–1088.CrossRefGoogle Scholar
  2. Alcalá-Galván, C.H., Krausman, P., 2013. Home range and habitat use by desert mule deer in altered habitats. Calif. Fish Game 99, 65–79.Google Scholar
  3. Allen, A.M., Singh, N., 2016. Linking movement ecology with wildlife management and conservation. Front. Ecol. Evol. 3, 1–13.CrossRefGoogle Scholar
  4. Anderson, A.E., Wallmo, O.C., 1984. Odocoileus hemionus. Mamm. Spec. 219, 1–9.CrossRefGoogle Scholar
  5. Anderson, A.W., 1949. Early summer foods and movements of the mule deer (Odocoileus hemionus) in the Sierra Veija range of southwestern Texas. Tex. J. Sci. 1, 45–50.Google Scholar
  6. Asensio, N., Lusseau, C.D., Schaffner, M., Aureli, F., 2012. Spider monkeys use high-quality core areas in a tropical dry forest. J. Zool. 287, 250–258.CrossRefGoogle Scholar
  7. Asensio, N., Brockelman, W.Y., Malaivijitnond, S., Reichard, U.H., 2014. White-handed Gibbon (Hylobates lar) core area use over a short-time scale. Biotropica 46, 461–469.CrossRefGoogle Scholar
  8. Avey, J.T., Ballard, W.B., Wallace, M.C., Humphrey, M.H., Krausman, P.R., Harwell, F., Fish, E.B., 2003. Habitat relationships between sympatric mule deer and white-tailed deer in Texas. Southwest. Nat. 48, 644–653.CrossRefGoogle Scholar
  9. BiotasTM, 2004. Ecological Software Solutions LLC. Hegymagas, Hungary. Version 1.03.Google Scholar
  10. Bowyer, R.T., 1984. Sexual segregation in southern mule deer. J. Mammal. 65, 410–417.CrossRefGoogle Scholar
  11. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A., 1984. Classification and Regression Trees. Wadsworth Belmont.Google Scholar
  12. Brunjes, K.J., Ballard, W.B., Humphrey, M.H., Harwell, F., McIntyre, N.E., Krausman, P.R., Wallace, M.C., 2006. Habitat use by sympatric mule and white-tailed deer in Texas. J. Wildl. Manage. 70, 1351–1359.CrossRefGoogle Scholar
  13. Brunjes, K.J., Ballard, W.B., Humphrey, M.H., Harwell, F., McIntyre, N.E., Krausman, P.R., Wallace, M.C., 2009. Home range of sympatric mule deer and white-tailed deer in Texas. Southwest. Nat. 54, 253–260.CrossRefGoogle Scholar
  14. Burt, W.H., 1943. Territoriality and home range concepts as applied to mammals. J. Mammal. 24, 346–352.CrossRefGoogle Scholar
  15. CONANP (Comisión Nacional de Áreas Naturales Protegidas), 2006. Programa de Conservación y Manejo Reserva de la Biosfera de Mapimí, México. Comisión Nacional de Áreas Naturales Protegidas, México, D.F.Google Scholar
  16. Cain, I.I.I., Krausman, J.W., Rosenstock, P.R., Turner, S.S., 2006. Mechanisms of thermoregulation and water balance in desert ungulates. Wildlife Soc. B 34, 570–581.CrossRefGoogle Scholar
  17. Cossío-Bayúgar, A., 2015. Interacciones ecológicas del venado bura (Odocoileus hemionus) y el bovino doméstico (Bos taurus) en la Reserva de la Biosfera de Mapimí, Durango, México. Ph.D. Thesis. Instituto de Ecología, A.C., Xalapa, Veracruz, México.Google Scholar
  18. Crawley, M.J., 2012. The R Book, second ed. John Wiley & Sons, West Sussex, England.CrossRefGoogle Scholar
  19. Davis, J.A., Kerezsy, A., Nicol, S., 2017. Springs: conserving perennial water is critical in arid landscapes. Biol. Conserv. 211, 30–35.CrossRefGoogle Scholar
  20. ESRI (Environmental Systems Research Institute), 1999. ArcView GIS, V. 3.2. ESRI Inc, California.Google Scholar
  21. Esparza-Carlos, J.P., Laundré, J.W., Sosa, V.J., 2011. Precipitation impacts on mule deer habitat use in the Chihuahuan Desert of Mexico. J. Arid Environ. 75, 1008–1015.CrossRefGoogle Scholar
  22. Esparza-Carlos, J.P., Laundré, J.W., Hernández, L., Íñiguez-Dávalos, L.I., 2016. Apprehension affecting foraging patterns and landscape use of mule deer in arid environments. Mammal. Biol. 81, 543–550.CrossRefGoogle Scholar
  23. Fox, K.B., Krausman, P.R., 1994. Fawning habitat of desert mule deer. Southwest. Nat. 39, 269–275.CrossRefGoogle Scholar
  24. Galindo-Leal, C., 1993. Densidades poblacionales de los venados cola blanca, cola negra y bura en Norte América. In: Medellín, R.A., Ceballos, G. (Eds.), Avances en el Estudio de los Mamíferos de México. Asociación Mexicana de Mastozoología A.C., México, pp. 371–391.Google Scholar
  25. Geist, V., 1981. Behavior: adaptive strategies in mule deer. In: Wallmo, O.C. (Ed.), Mule and Black-tailed Deer of North America. University of Nebraska Press, Lincoln, Nebraska, pp. 157–223.Google Scholar
  26. Geist, V., 1998. Deer of the World, Their Evolution, Behavior and Ecology. Stackpole Books, Mechanicsburg, Pennsylvania.Google Scholar
  27. Getz, W.M., Saltz, D., 2008. A framework for generating and analyzing movement paths on ecological landscape. Proc. Natl. Acad. Sci. U. S. A. 105, 19066–19071.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Guth, M.C.G.A., 1987. Hábitos Alimenticios del Venado Bura (Odocoileushemionus, Rafinesque 1817) en la Reserva de la Biosfera de Mapimí, Durango. BSc. Thesis. Universidad Nacional Autónoma de México, México.Google Scholar
  29. Halsey, S.M., Zielinski, W.J., Scheller, R.M., 2015. Modeling predator habitat to enhance reintroduction planning. Landsc. Ecol. 30, 1257–1271.CrossRefGoogle Scholar
  30. Hayes, C.L., Krausman, P.R., 1993. Nocturnal activity of female desert mule deer. J. Wildl. Manage. 57, 897–904.CrossRefGoogle Scholar
  31. Heffelfinger, J.R., Brewer, C., Alcalá-Galván, C.H., Hale, B., Weybright, D.L., Wakeling, B.F., Carpenter, L.H., Dodd, N.L., 2006. Habitat Guidelines for Mule Deer: Southwest Deserts Ecoregion. Mule Deer Working Group, Western Association of Fish and Wildlife Agencies.Google Scholar
  32. Hervert, J.J., Krausman, P.R., 1986. Desert mule deeruse of water developments in Arizona. J. Wildl. Manage. 50, 670–676.CrossRefGoogle Scholar
  33. Holyoak, M., Casagrandi, R., Nathan, R., Revilla, E., Spiegel, O., 2008. Trends and missing parts in the study of movement ecology. Proc. Natl. Acad. Sci. 105, 19060–19065.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Hooge, P.N., Eichenlaub, W.M., Solomon, E.K., 2001. Using GIS to analyze animal movements in the marine environment. In: Spatial Processes and Management of Marine Populations. Alaska Sea Grant College Program, Anchorage, Alaska.Google Scholar
  35. Hungerford, C.R., Burke, M.D., Ftolliot, P.F., 1981. Biology and population dynamics of mule deer in Southwestern United States. In: Ftolliot, P.F., Gallina, S. (Eds.), Deer Biology, Habitat Requirements, and Management in Western North America. México, D.F. Instituto de Ecología, pp. 109–131.Google Scholar
  36. Johnson, A.R., Wiens, J.A., Milne, B.T., Crist, T.O., 1992. Animal movements and population dynamics in heterogeneous landscapes. Landsc. Ecol. 7, 63–75.CrossRefGoogle Scholar
  37. Kaufman, J.H., 1962. Ecology and social behavior of the coati Nasua narica on Barro Colorado Island, Panama. Univ. Calif. Publ. Zool. 60, 95–222.Google Scholar
  38. Kernohan, B.J., Gitzen, R.A., Millspaugh, J.J., 2001. Analysis of animal space use and movement. In: Millspaugh, J.J., Marzluff, J.M. (Eds.), Radio Tracking and Animal Populations. Academic Press, San Diego, California, pp. 125–166.CrossRefGoogle Scholar
  39. Kie, J.G., Bowyer, R.T., Nicholson, M.C, Boroski, B.B., Loft, E.R., 2002. Landscape heterogeneity at differing scales: effects on spatial distribution of mule deer. Ecology 83, 530–544.CrossRefGoogle Scholar
  40. Krausman, P.R., Czech, B., 1998. Water developments and desert ungulates. In: Feller, M., Strouse, D.S. (Eds.), Environmental, Economic, and Legal Issues Related to Rangeland Water. College of Law, Arizona State University, Tempe, pp. 138–154.Google Scholar
  41. Krausman, P.R., 1976. Ecology of Carmen Mountains White-tailed Deer. Ph.D. Thesis. Univ. Idaho, Moscow.Google Scholar
  42. Kucera, T.E., 1978. Social behavior and breeding system of the desert mule deer. J. Mammal. 59, 463–476.CrossRefGoogle Scholar
  43. Mackie, R.J., Kie, J.G., Pac, D.F., Hamlin, K.L., 2003. Mule deer. Odocoileus hemionus. In: Feldhamer, G.A., Thompson, B.C., Chapman, J.A. (Eds.), Wild Mammals of North America. Biology, Management, and Conservation. Johns Hopkins University Press, Baltimore, Maryland, pp. 889–905.Google Scholar
  44. Marshal, J.P., Bleich, V.C, Krausman, P.R., Reed, M.L., Andrew, N.G., 2006. Factors affecting habitat use and distribution of desert mule deer in an arid environment. Wildl. Soc. Bull. 34, 609–619.CrossRefGoogle Scholar
  45. Martínez-Muñoz, A., Hewitt, D.G., Valenzuela, S., Uvalle, J.I., Estrada, A.E., Avendaño, J.J., Aranda, R., 2003. Habitat and population status of desert mule deer in Mexico. Z. Jagdwissenschaft. 49, 14–24.Google Scholar
  46. McKee, C.J., Stewart, K.M., Sedinger, J.S., Bush, A.P., Darby, N.W., Hughson, D.L., Bleich, V.C, 2015. Spatial distributions and resource selection by mule deer in an arid environment: responses to provision of water. J. Arid Environ. 22, 76–84.CrossRefGoogle Scholar
  47. Merrick, M.J., Koprowski, J.L., 2017. Should we consider individual behavior differences in applied wildlife conservation studies? Biol. Cons. 209, 34–44.CrossRefGoogle Scholar
  48. Montana, C., Breimer, R.F., 1988. Major vegetation and environment units. In: Montana, C. (Ed.), Estudio Integrado de los Recursos Vegetación, Suelo y Agua en la Reserva de la Biosfera de Mapimí. Instituto de Ecología, México, pp. 99–114.Google Scholar
  49. Montana, C., 1988. Las formaciones vegetales. In: Montana, C. (Ed.), Estudio Integrado de los Recursos Vegetación, Suelo y Agua en la Reserva de la Biosfera de Mapimí. Instituto de Ecología, México, pp. 167–197.Google Scholar
  50. Montana, C., 1992. The colonization of bare areas in two-phase mosaics of an arid ecosystem. J. Ecol. 80, 315–327.CrossRefGoogle Scholar
  51. Nathan, R., Getz, W.M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D., Smouse, P.E., 2008. A movement ecology paradigm for unifying organismal movement research. Natl. Acad. Sci. U. S. A. 105, 19052–19059.CrossRefGoogle Scholar
  52. Ordway, L.L., Krausman, P.R., 1986. Habitat use by desert mule deer. J. Wildl. Manage. 50, 677–683.CrossRefGoogle Scholar
  53. Pépin, D., Adrados, C., Janeau, G., Joachim, J., Mann, C., 2008. Individual variation in migratory and exploratory movements and habitat use by adult red deer (Cervus elaphus L.) in a mountainous temperate forest. Ecol. Res. 23, 1005–1013.CrossRefGoogle Scholar
  54. Pérez-Solano, L.A., Gallina-Tessaro, S., Sánchez-Rojas, G., 2016. Individual variation in mule deer (Odocoileus hemionus) habitat and home range in the Chihuahuan Desert, Mexico. J. Mammal. 97, 1228–1237.CrossRefGoogle Scholar
  55. Powell, R.A., 2000. Animal home ranges and territories and home range estimators. In: Boitani, L., Fuller, T.K. (Eds.), Research Techniques in Animal Ecology: Controversies and Consequences. Columbia University Press New York, New York, pp. 65–110.Google Scholar
  56. Powell, R.A., 2012. Movements, home ranges, activity, and dispersal. In: Boitani, L., Powell, R.A. (Eds.), Carnivore Ecology and Conservation. A handbook of techniques, pp. 188–217.CrossRefGoogle Scholar
  57. Relyea, R.A., Demarais, S., 1994. Activity of desert mule deer during the breeding season. J. Mammal. 75, 940–949.CrossRefGoogle Scholar
  58. Relyea, R.A., Lawrence, R.K., Demarais, S., 2000. Home range of desert mule deer: testing the body-size and habitat-productivity hypotheses. J. Wildl. Manage. 64, 146–153.CrossRefGoogle Scholar
  59. Ripley, B., 2016. Tree: Classification and Regression Trees. R Package Version 1., pp. 0-37 https://CRAN.R-project.org/package=tree.Google Scholar
  60. Runge, C.A., Martin, T.G., Possingham, H.P., Willis, S.G., Fuller, R.A., 2014. Conserving mobile species. Front. Ecol. Environ. 12, 395–402.CrossRefGoogle Scholar
  61. Rzedowski, J., 1978. Vegetación de México. Limusa.Google Scholar
  62. Sánchez-Rojas, G., Gallina, S., 2000a. Factors affecting habitat use by mule deer (Odocoileus hemionus) in the central part of the Chihuahuan Desert, Mexico: an assessment with univariate and multivariate methods. Ethol. Ecol. Evol. 12, 405–417.CrossRefGoogle Scholar
  63. Sánchez-Rojas, G., Gallina, S., 2000b. Mule deer (Odocoileus hemionus) density in a landscape element of the Chihuahuan Desert, Mexico. J. Arid Environ. 44, 357–368.CrossRefGoogle Scholar
  64. Sánchez-Rojas, G., Gallina, S., 2008. Odocoileus hemionus. The IUCN Red List of Threatened Species. Version 2013.2 (www.iucnredlist.org. Accessed 24 May 2017).Google Scholar
  65. SEMARNAP (Secretaria de Medio Ambiente, Recursos Naturales y Pesca), 2000. Decreto de la Reserva de la Biosfera de Mapimí, Durango. Secretaria de Medio Ambiente, Recursos Naturales y Pesca, Durango, México.Google Scholar
  66. SEMARNAT (Secretaria de Medio Ambiente, Recursos Naturales), 2010. Plan de manejo tipo para venado bura (Odocoileus hemionus). Secretaria de Medio Ambiente, Recursos Naturales, México, D. F.Google Scholar
  67. Samuel, M.D., Green, R.E., 1988. A revised test procedure for identifying core areas within the home range. J. Anim. Ecol. 57, 1067–1068.CrossRefGoogle Scholar
  68. Samuel, M.D., Pierce, D., Garton, E.O., 1985. Identifying areas of concentrated use within the home range. J. Anim. Ecol. 54, 11–19.CrossRefGoogle Scholar
  69. Shields, A.V., Larsen, R.T., Whiting, J.C., 2012. Summer watering patterns of mule deer in the Great Basin Desert, USA: implications of differential use by individuals and the sexes for management of water resources. Sci. World J. 12, 1–9.CrossRefGoogle Scholar
  70. Sikes, R.S., Gannon, W.L., 2011. The Animal Care and Use Committee of American Society of Mammalogists. Guidelines of the American Society of Mammalogists forthe use of wild mammals in research. J. Mammal. 92, 235–253.CrossRefGoogle Scholar
  71. Smit, I.P.J., Grant, C.C., 2009. Managing surface-water in a large semi-arid savanna park: effects on grazer distribution patterns. J. Nat. Conserv. 17, 61–71.CrossRefGoogle Scholar
  72. Smit, I.P.J., Grant, C.C., Devereux, B.J., 2007. Do artificial waterholes influence the way herbivores use the landscape? Herbivore distribution patterns around rivers and artificial surface water sources in a large African savanna park. Biol. Cons. 136, 85–99.CrossRefGoogle Scholar
  73. Tull, J.C., Krausman, P.R., Steidl, R.J., 2001. Bed-site selection by desert mule deer in southern Arizona. Southwest. Nat. 3, 354–357.CrossRefGoogle Scholar
  74. Vayssières, M.P., Plant, R.E., Allen-Diaz, B.H., 2000. Classification trees: an alternative non-parametric approach for predicting species distributions. J. Veg. Sci. 11, 679–694.CrossRefGoogle Scholar
  75. Webb, S.L., Dzialak, M.R., Houchen, D., Kosciuch, K.L., Winstead, J.B., 2013. Spatial ecology of female mule deer in an area proposed for wind energy development. West. North Am. Nat. 73, 347–356.CrossRefGoogle Scholar
  76. White, G.C., Garrott, R.A., 1990. Analysis of Radio-tracking Data. Academic San Diego, California.Google Scholar
  77. Whittaker, D.G., Lindzey, F.G., 1999. Effect of coyote predation on early fawn survival in sympatric deer species. Wildlife Soc. B 27, 256–262.Google Scholar
  78. Withey, J.C., Bloxton, T.D., Marzluff, J.M., 2001. Effects of tagging and location error in wildlife radiotelemetry studies. In: Millspaugh, J.J., Marzluff, J.M. (Eds.), Radio Tracking and Animal Populations. Academic Press, San Diego, pp. 43–75.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde, e. V. DGS 2017

Authors and Affiliations

  • Luz Adriana Pérez-Solano
    • 1
    Email author
  • Luis M. García-Feria
    • 1
  • Sonia Gallina-Tessaro
    • 1
  1. 1.Red de Biología y Conservación de VertebradosInstituto de Ecología, A.C.Xalapa, VeracruzMexico

Personalised recommendations