Advertisement

Mammalian Biology

, Volume 87, Issue 1, pp 1–12 | Cite as

Morphometric variations at an ecological scale: Seasonal and local variations in feral and commensal house mice

  • Sabrina RenaudEmail author
  • Emilie A. Hardouin
  • Jean-Pierre Quéré
  • Pascale Chevret
Original investigation

Abstract

The time scales of evolutionary and ecological studies tend to converge, as shown by evidences that contemporary evolution can occur as fast as ecological processes. This opens new questions regarding variation of characters usually considered to change mostly along an evolutionary time scale, such as morphometric traits, including osteological and dental features such as mandibles and teeth of mammals. Using two-dimensional geometric morphometric approach, we questioned whether such features can change on a seasonal and local basis, in relation to the ecological dynamics of the populations. Our model comprised populations of house mice (Mus musculus domesticus) in two contrasted situations in mainland Western Europe: a feral population vs. two close commensal populations. Mitochondrial DNA (D-loop) provided insight into the diversity and dynamics of the populations.

The feral population appeared as genetically highly diversified, suggesting a possible functioning as a sink in relation to the surrounding commensal populations. In contrast, commensal populations were highly homogeneous from a genetic point of view, suggesting each population to be isolated. This triggered morphological differentiation between neighboring farms. Seasonal differences in morphometric traits (mandible size and shape and molar size and shape) were significant in both settings, although seasonal variations were greater in the feral than in the commensal population. Seasonal variations in molar size and shape could be attributed to differential wear in young or overwintered populations. Differences in mandible shape could be related to aging in overwintered animals, but also possibly to differing growth conditions depending on the season. The impact of these ecological processes on morphometric traits is moderate compared to divergence over a large biogeographic scale, but their significance nevertheless underlines that even morphological characters may trace populations dynamics at small scale in time and space.

Keywords

Mus musculus domesticus Murinae Rodent Geometric morphometrics Mandible Molar shape Phylogeny D-loop 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike, H., 1973. Information theory as an extension of the maximum likelihood principle. In: Kiado, A. (Ed.), Second International Symposium on Information Theory. Budapest, Hungary, pp. 267–281.Google Scholar
  2. Anderson, P.S.L., Renaud, S., Rayfield, E.J., 2014. Adaptive plasticity in the mouse mandible. BMC Evol. Biol. 14, 85.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Avenant, N.L., Smith, V.R., 2004. Seasonal changes in age class structure and reproductive status of house mice on Marion island (sub-Antarctic). Polar Biol. 27, 99–111.CrossRefGoogle Scholar
  4. Berry, R.J., 1981. Town Mouse, country Mouse: adaptation and adaptability in Mus domesticus (M. musculus domesticus). Mamm. Rev. 11, 91–136.CrossRefGoogle Scholar
  5. Bonhomme, V., Picq, S., Gaucherel, C., Claude, J., 2014. Momocs: outline analysis using R. J. Stat. Softw. 56, 1–24.CrossRefGoogle Scholar
  6. Cassaing, J., Croset, H., 1985. Organisation spatiale, compétition et dynamique des populations sauvages de Souris (Mus spretus Lataste et Mus musculus domesticus Rutty) du Midi de la France. Zeitschrift fürSaügetierkunde 50, 271–284.Google Scholar
  7. Cho, S.W., Lee, H.-A., Cai, J., Lee, M.J., Kim, J.Y., Ohshima, H., Jung, H.S., 2007. The primary enamel knot determines the position of the first buccal cusp in developing mice molars. Differentiation 75, 441–451.PubMedCrossRefGoogle Scholar
  8. Collyer, M.L., Stockwell, C.A., Adams, C.D., Reiser, M.H., 2007. Phenotypic plasticity and contemporary evolution in introduced populations: evidence from translocated populations of white sand pupfish (Cyrpinodon tularosa). Ecol. Res. 22, 902–910.CrossRefGoogle Scholar
  9. Crampton, J.S., 1995. Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia 28, 179–186.CrossRefGoogle Scholar
  10. Cucchi, T., 2008. Uluburun shipwreck stowaway house mouse: molar shape analysis and indirect clues about the vessel’s last journe. J. Archaeol. Sci. 35, 2953–2959.CrossRefGoogle Scholar
  11. Darriba, D., Taboada, G.L., Doallo, R., Posada, D., 2012. ModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Dray, S., Dufour, A.B., 2007. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20.CrossRefGoogle Scholar
  13. Dujardin, J.-P., Kaba, D., Solano, P., Dupraz, M., McCoy, K.D., Jaramillo-O, N., 2014. Outline-based morphometrics, an overlooked method in arthropod studies? Infect. Genet. Evolut. 28, 704–714.CrossRefGoogle Scholar
  14. Efford, M.G., Karl, B.J., Moller, H., 1988. Population ecology of Mus musculus on Mana island New Zealand. J. Zool. Lond. 216, 539–563.CrossRefGoogle Scholar
  15. Ghalambor, C.K., McKay, J.M., Carroll, S.P., Reznick, D.N., 2007. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407.CrossRefGoogle Scholar
  16. Gouy, M., Guindon, S., Gascuel, O., Lyon, D., 2010. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Guérécheau, A., Ledevin, R., Henttonen, H., Deffontaine, V., Michaux, J.R., Chevret, P., Renaud, S., 2010. Seasonal variation in molar outline of bank voles: an effect of wear? Mamm. Biol. 75, 311–319.CrossRefGoogle Scholar
  18. Hammer, Ø., Harper, D.A.T., Ryan, P.D., 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9.Google Scholar
  19. Hardouin, E., Chapuis, J.L., Stevens, M.I., van Vuuren, J.B., Quillfeldt, P., Scavetta, R.J., Teschke, M., Tautz, D., 2010. House mouse colonization patterns on the sub-Antarctic Kerguelen Archipelago suggest singular primary invasions and resilience against re-invasion. BMC Evol. Biol. 10, 325.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Kinnison, M.T., Hairston, G.J., 2007. Eco-evolutionary conservation biology: contemporary evolution and the dynamics of persistence. Funct. Ecol. 21, 444–454.CrossRefGoogle Scholar
  21. Klingenberg, C.P., Mebus, K., Auffray, J.-C, 2003. Developmental integration in a complex morphological structure: how distinct are the modules in the mouse mandible? Evol. Dev. 5, 522–531.CrossRefGoogle Scholar
  22. Lambrinos, J.G., 2004. How interactions between ecology and evolution influence contemporary invasion dynamics. Ecology 85, 2061–2070.CrossRefGoogle Scholar
  23. Ledevin, R., Chevret, P., Ganem, G., Britton-Davidian, J., Hardouin, E.A., Chapuis, J.-L., Pisanu, B., Mathias M. d.L. Schlager, S., Auffray, J.-C, Renaud, S., 2016. Phylogeny and adaptation shape the teeth of insular mice. Proc. R. Soc. Lond. Biol. Sci. (Ser. B) 283, 20152820.PubMedCrossRefGoogle Scholar
  24. Lenormand, T., 2002. Gene flow and the limits to natural selection. Trends Ecol. Evol. 17, 183–189.CrossRefGoogle Scholar
  25. Librado, P., Rozas, J., 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.Google Scholar
  26. Lidicker, W.Z., 1966. Ecological observations on a feral house mouse population declining to extinction. Ecol. Monogr. 36, 27–50.CrossRefGoogle Scholar
  27. Matthewson, D.C, Van Aarde, R.J., Skinner, J.D., 1994. Population biology of house mice (Mus musculus L.) on sub-Antarctic Marion island. S. Afr. J. Zool. 29, 99–106.Google Scholar
  28. Pocock, M.J.O., Searle, J.B., White, P.C.L., 2004. Adaptations of animals to commensal habitats: population dynamics of house mice Mus musculus domesticus on farms. J. Anim. Ecol. 73, 878–888.CrossRefGoogle Scholar
  29. Pryor, S., Bronson, F.H., 1981. Relative and combined effects of low temperature, poor diet, and short daylength on the productivity of wild house mice. Biol. Reprod. 25, 734–743.PubMedCrossRefGoogle Scholar
  30. Rcore team, 2015. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  31. Rambaut, A., Suchard, M.A., Xie, D., Drummond, A.J., 2014. Tracer v1.6, http://beast.bio.ed.ac.uk/Tracer.Google Scholar
  32. Rambaut, A., 2012. Figtree v1.4., http://tree.bio.ed.ac.uk/software/figtree/.Google Scholar
  33. Renaud, S., Michaux, J., Jaeger, J.J., Auffray, J.-C, 1996. Fourier analysis applied to Stephanomys (Rodentia, Muridae) molars: nonprogressive evolutionary pattern in a gradual lineage. Paleobiology 22, 255–265.CrossRefGoogle Scholar
  34. Renaud, S., Auffray, J.-C, Michaux, J., 2006. Conserved phenotypic variation patterns, evolution along lines of least resistance, and departure due to selection in fossil rodents. Evolution 60, 1701–1717.PubMedCrossRefGoogle Scholar
  35. Renaud, S., Pantalacci, S., Auffray, J.-C, 2011. Differential evolvability along lines of least resistance of upper and lower molars in island house mice. PLoS One 6, e18951.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Renaud, S., Hardouin, E.A., Pisanu, B., Chapuis, J.L., 2013. Invasive house mice facing a changing environment on the sub-Antarctic Guillou island (Kerguelen Archipelago). J. Evol. Biol. 26, 612–624.PubMedCrossRefGoogle Scholar
  37. Renaud, S., Dufour, A.B., Hardouin, E.A., Ledevin, R., Auffray, J.-C., 2015a. Once upon multivariate analyses: when they tell several stories about biological evolution. PLoS One 10, e0132801.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Renaud, S., Gomes Rodrigues, H., Ledevin, R., Pisanu, B., Chapuis, J.-L., Hardouin, E.A., 2015b. Fast morphological response of house mice to anthropogenic disturbances on a sub-Antarctic island. Biol. J. Linn. Soc. 114, 513–526.CrossRefGoogle Scholar
  39. Renaud, S., 2005. First upper molar and mandible shape of wood mice (Apodemus sylvaticus) from northern Germany: ageing, habitat and insularity. Mamm. Biol. 70, 157–170.CrossRefGoogle Scholar
  40. Rohlf, F.J., Archie, J.W., 1984. A comparison of Fourier methods forthe description of wing shape in mosquitoes (Diptera: culicidae). Syst. Zool. 33, 302–317.CrossRefGoogle Scholar
  41. Ronquist, F., Teslenko, M., Mark, P.v.d., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P., 2012. MrBayes3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Rowe, F.P., Swinney, T., Quy, R.J., 1983. Reproduction of the house mouse (Mus musculus) in farm buildings. J. Zool. Lond. 199, 259–269.CrossRefGoogle Scholar
  43. Sheets, H.D., Covino, K.M., Panasiewicz, J.M., Morris, S.R., 2006. Comparison of geometric morphometric outline methods in the discrimination of age-related differences in feather shape. Front. Zool. 3, 15.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Singleton, G.R., 1983. The social and genetic structure of a natural colony of house mice, Mus musculus, at Healesville wildlife sanctuary. Aust. J. Zool. 31, 155–166.CrossRefGoogle Scholar
  45. Swiderski, D.L., Zelditch, M.L., 2013. The complex ontogenetic trajectory of mandibular shape in a laboratory mouse. J. Anat. 223, 568–580.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Triggs, G.S., 1991. The population ecology of house mice (Mus domesticus) on the Isle of May Scotland. J. Zool. Lond. 225, 449–468.CrossRefGoogle Scholar
  48. Valenzuela-Lamas, S., Baylac, M., Cucchi, T., Vigne, J.D., 2011. House mouse dispersal in iron age Spain: a geometric morphometrics appraisal. Biol. J. Linn. Soc. 102, 483–497.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde, e. V. DGS 2017

Authors and Affiliations

  • Sabrina Renaud
    • 1
    Email author
  • Emilie A. Hardouin
    • 2
  • Jean-Pierre Quéré
    • 3
  • Pascale Chevret
    • 1
  1. 1.Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRSUniversité de LyonVilleurbanneFrance
  2. 2.Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityPoole, DorsetUK
  3. 3.Centre de Biologie et Gestion des Populations (INRA I/RD Cirad Montpellier SupAgro)Montferrier-sur-Lez CedexFrance

Personalised recommendations