Advertisement

Mammalian Biology

, Volume 83, Issue 1, pp 78–80 | Cite as

Sexual-size dimorphism in two synanthropic rat species: Comparison and eco-evolutionary perspectives

  • Emiliano MoriEmail author
  • Angela Iacucci
  • Riccardo Castiglia
  • Luca Santini
Short communication

Abstract

Sexual dimorphism is a common trait in many mammal species and sexual-size dimorphism (SSD) repre-sents its commonest form. Rattus rattus and Rattus norvegicus are two cosmopolitan, polygynous species, for which a male-biased SSD has been anecdotally reported, but never quantified. In this work, we assessed the occurrence of SSD in both species and we tested the hypothesis that R. norvegicus has a more evident SSD than R. rattus, in agreement with their body mass-testes size ratio, intra-male aggressive behaviour and mating system. We collected weight data of 40 (20 males and 20 females) adult R. rattus and 27 (13 males and 14 females) adult R. norvegicus from 4 localities in Italy characterized by different habitat typologies. We used a t-test based on Bayesian inference to compare the SSD in both species. The results were in line with our expectation supporting a higher SSD in R. norvegicus than in R. rattus. This study aimed to identify the eco-evolutionary drivers of SSD., and provides further support to well established life history theories on two widely distributed rodent species.

Keywords

Black rat Brown rat Rattus rattus Rattus norvegicus Sexual-size dimorphism Body mass 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Čanády, A., Mosansky, L., Krisovsky, P., 2016. Are there sex differences in the body size ofthe Eurasian red squirrel in Slovakia? Eur.J. Ecol.,  https://doi.org/10.1515/eje-2015-0002.Google Scholar
  2. Amori, G., Contoli, L., Nappi, A., 2008. Mammalia II: Erinaceomorpha, Soricomorpha, Lagomorpha Rodentia. In: Il Sole 24 Ore. Edagricole, Calderini Edizioni, Bologna, Italy.Google Scholar
  3. Andersson, M.B., 1994. Sexual Selection. Princeton University Press, Princeton, New Jersey, USA.Google Scholar
  4. Aplin, K.P., Chesser, T., Ten Have, J., 2003. Evolutionary biology ofthe genus Rattus: profile of an archetypal rodent pest. In: Singleton, G.R., Hinds, L.A., Krebs, C.J., Spratt, D.M. (Eds.), Rats, Mice and People: Rodent Biology and Management. Australian Center for International Agriculture Research, Canberra, Australia.Google Scholar
  5. Barnett, S.A., 1958. An analysis of social behaviour in wild rats. Proc. Zool. Soc. Lond. 130, 107–152.CrossRefGoogle Scholar
  6. Boonstra, R., Gilbert, B.S., Krebs, C.J., 1993. Mating systems and sexual dimorphism in mass in microtines. J. Mammal. 74, 224–229.CrossRefGoogle Scholar
  7. Cheverud, J.M., Dow, M.M., Leutenegger, W., 1985. The quantitative assessment of phylogenetic constraints in comparative analyses: sexual dimorphism in body weight among primates. Evolution 39, 1335–1351.CrossRefGoogle Scholar
  8. Dunn, P.O., Whittingham, L.A., Pitcher, T.E., 2001. Mating systems, sperm competition, and the evolution of sexual dimorphism in birds. Evolution 55, 161–175.CrossRefGoogle Scholar
  9. Emlen, S.T., Oring, L.W., 1977. Ecology, sexual selection, and the evolution of mating systems. Science 197, 215–223.CrossRefGoogle Scholar
  10. Ewer, R.F., 1971. The biology and behaviour of a free-living population of black rats (Rattus rattus). Anim. Behav. Mongr. 4, 125IN1141-140IN2174.CrossRefGoogle Scholar
  11. Fairbairn, D.J., Blanckenhorn, W.U., Székely, T., 2007. Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
  12. Festa-Bianchet, M., King, W.J., Jorgenson, J.T., Smith, K.G., Wishart, W.D., 1996. The development of sexual dimorphism: seasonal and lifetime mass changes in bighorn sheep. Can. J. Zool. 74, 330–342.CrossRefGoogle Scholar
  13. Heske, E.J., Ostfeld, R.S., 1990. Sexual dimorphism in size, relative size of testes, and mating systems in North American voles.J. Mammal. 71, 510–519.CrossRefGoogle Scholar
  14. Isaac, J.L., 2005. Potential causes and life-history consequences of sexual size dimorphism in mammals. Mamm. Rev. 35, 101–115.CrossRefGoogle Scholar
  15. Karubian, J., Swaddle, J.P., 2001. Selection on females can create larger males. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 268, 725–728.CrossRefGoogle Scholar
  16. Kenagy, G.J., Trombulak, S.C., 1986. Size and function of mammalian testes in relation to body size. J. Mammal. 67, 1–22.CrossRefGoogle Scholar
  17. Koprowski, J.L., 1994. Sciurus carolinensis. Mamm. Species 480, 1–9.Google Scholar
  18. Kruschke, J.K., Meredith, M., 2015. Package ’BEST’: Bayesian Estimation Supersedes the, https://doi.org/CRAN.R-project.org/package=BEST (Accessed 15th August 2016).Google Scholar
  19. Kruschke, J.K., 2013. Bayesian estimation supersedes the t-test. J. Exp. Pyschol. 142, 573.CrossRefGoogle Scholar
  20. Krystufek, B., 2010. Glis glis (Rodentia: Gliridae). Mamm. Species 42, 195–206.CrossRefGoogle Scholar
  21. Lammers, A.R., Dziech, H.A., German, R.Z., 2001. Ontogeny of sexual dimorphism in Chinchilla lanigera (Rodentia: Chinchillidae). J. Mammal. 82, 179–189.CrossRefGoogle Scholar
  22. Le Boeuf, B.J., 1974. Male-male competition and reproductive success in elephant seals. Am. Zool. 14, 163–176.CrossRefGoogle Scholar
  23. Leutenegger, W., Cheverud, J., 1982. Correlates of sexual dimorphism in primates: ecological and size variables. Int. J. Primatol. 3, 387–402.CrossRefGoogle Scholar
  24. Loison, A., Gaillard, J.M., Pèlabon, C., Yoccoz, N.G., 1999. What shape sexual size dimorphism inungulates? Evol. Ecol. Res. 1, 611–633.Google Scholar
  25. Mori, E., Lovari, S., 2014. Sexual size monomorphism in the crested porcupine (Hystrix cristata). Mammal. Biol. 79, 157–160.Google Scholar
  26. Pergams, O.R.W., Lawler, J.J., 2009. Recent and widespread rapid morphological changes in rodents. PLoS One 4, e6452.CrossRefGoogle Scholar
  27. Poulin, R., Morand, S., 2000. Testes size, body size and male-male competition in acanthocephalan parasites. J. Zool. (Lond.) 250, 551–558.Google Scholar
  28. Russell, J.C., Town, D.R., Clout, M.N., 2008. Review of rat invasion biology: implications for island biosecurity. In: Science forConservation 286. Department of Conservation, New Zealand.Google Scholar
  29. Song, Y., Lan, Z., Kohn, M.H., 2014. Mitochondrial DNA phylogeography ofthe Norway rat. PLoS One 9, e88425.CrossRefGoogle Scholar
  30. Trivers, R.L., 1972. Parental investment and sexual selection. In: Campbell, B. (Ed.), Sexual Selection and the Descent of Man. Aldine Publishing, Chicago, Illinois, pp. 136–179.Google Scholar
  31. Weckerly, F.W., 1998. Sexual-size dimorphism: influence of mass and mating systems in the most dimorphic mammals. J. Mammal. 79, 33–52.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde, e. V. DGS 2017

Authors and Affiliations

  • Emiliano Mori
    • 1
    Email author
  • Angela Iacucci
    • 1
  • Riccardo Castiglia
    • 2
  • Luca Santini
    • 3
  1. 1.Research Unit of Behavioural Ecology, Ethology and Wildlife Management - Department of Life SciencesUniversity of SienaSienaItaly
  2. 2.Department of Biology and Biotechnology “Charles Darwin”University “La Sapienza”RomeItaly
  3. 3.Department of Environmental ScienceRadboud UniversityNijmegenThe Netherlands

Personalised recommendations