Mammalian Biology

, Volume 83, Issue 1, pp 1–09 | Cite as

Comparative evaluation of three sampling methods to estimate detection probability of American red squirrels (Tamiasciurus hudsonicus)

  • Emilie E. ChavelEmail author
  • Marc J. Mazerolle
  • Louis Imbeau
  • Pierre Drapeau
Original investigation


Measuring changes in species distribution and understanding factors influencing site occupancy are recurring goals in wildlife studies. Imperfect detection of species hinders such studies, resulting in the underestimation of the number of sites occupied by the species of interest. American red squirrels (Tamiasciurus hudsonicus) are sampled traditionally with live-traps that require substantial resources to deploy and monitor. Here, we assessed whether auditory methods yield similar detection probabilities. We compared the detection probability of American red squirrels in boreal forest using point counts, playback counts, and live-trapping. Over the summer of 2014, we conducted three trapping sessions in 60 sites within black spruce forests of northwestern Quebec, Canada. We also conducted 10 min point counts in the same sites, together with playback counts using recordings of American red squirrel alarm and territorial calls. Using dynamic occupancy models to analyse three primary periods, all composed of three secondary periods, we found that the detection probability of squirrels from point counts was as high as with live-trapping. Our results thus highlight the value of the point count method in measuring American red squirrel occupancy.


Detectability Live-trapping Playback count Point count Site occupancy Sciurids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allard-Duchêne, A., Pothier, D., Dupuch, A., Fortin, D., 2014. Temporal changes in habitat use by snowshoe hares and red squirrels during post-fire and post-logging forest succession. For. Ecol. Manag. 313, 17–25.CrossRefGoogle Scholar
  2. Bayne, E.M., Hobson, K.A., 2000. Relative use of contiguous and fragmented boreal forest by red squirrels (Tamiasciurus hudsonicus). Can. J. Zool. 78, 359–365.Google Scholar
  3. Bayne, E.M., Hobson, K.A., 2002. Effects of red squirrel (Tamiasciurus hudsonicus) removal on survival of artificial songbird nests in boreal forest fragments. Am. Midl. Nat. 147, 72–79.CrossRefGoogle Scholar
  4. Bergeron, Y., Gauthier, S., Flannigan, M., Kafka, V., 2004. Fire regimes at the transition between mixedwood and coniferous boreal forest in northwestern Quebec. Ecology 85, 1916–1932.Google Scholar
  5. Blouin, J., Berger, J.P., 2002. Guide de reconnaissance des types écologiques-Région écologique 5a Plaines de l’Abitibi. Ministère des Ressources Naturelles et de la Faune, Direction des Inventaires Forestiers, Division de la classification écologique et productivité des stations, Québec. Rep. n° 2002–3072, Québec, Canada, pp. 1–180.Google Scholar
  6. Bosson, CO., Islam, Z., Boonstra, R., 2012. The impact of live trapping and trap model on the stress profiles of North American red squirrels. J. Zool. 288, 159–169.CrossRefGoogle Scholar
  7. Boutin, S., Wauters, LA., McAdam, A.G., Humphries, M.M., Tosi, G., Dhondt, A.A., 2006. Anticipatory reproduction and population growth in seed predators. Science 314, 1928–1930.Google Scholar
  8. Buchanan, J.B., Lundquist, R.W., Aubry, K.B., 1990. Winter populations of Douglas’ squirrels in different-aged Douglas-fir forests. J. Wildl. Manage. 54, 577–581.CrossRefGoogle Scholar
  9. Burke Da Silva, K., Kramer, D.L., Weary, D.M., 1994. Context-specific alarm calls of the eastern chipmunk, Tamias striatus. Can.J. Zool. 72, 1087–1092.Google Scholar
  10. Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference: A Practical Information-theoretic Approach, 2nd ed. Springer-Verlag, New York.Google Scholar
  11. Burton, A.C., Neilson, E., Moreira, D., Ladle, A., Steenweg, R., Fisher, J.T., Bayne, E., Boutin, S., 2015. Wildlife camera trapping. a reviewand recommendations for linking surveys to ecological processes. J. Appl. Ecol. 52, 675–685.Google Scholar
  12. Callahan, J.R., 1993. Squirrels as predators. Great Basin Nat. 1, 137–144.Google Scholar
  13. Carey, A.B., 2000. Effects of new forest management strategies on squirrel populations. Ecol. Appl. 10, 248–257.Google Scholar
  14. Dantzer, B., Boutin, S., Humphries, M., McAdam, A.G., 2012. Behavioral responses of territorial red squirrels to natural and experimental variation in population density. Behav. Ecol. Sociobiol. 66, 865–878.CrossRefGoogle Scholar
  15. Darveau, M., Bélanger, L., Huot, J., Mélancon, E., DeBellefeuille, S., 1997. Forestry practices and the risk of bird nest predation in a boreal coniferous forest. Ecol. Appl. 7, 572–580.CrossRefGoogle Scholar
  16. Drapeau, P., Leduc, A., McNeil, R., 1999. Refiningthe use of point counts at the scale of individual points in studies of bird-habitat relationships. J. Avian Biol. 30, 367–382.CrossRefGoogle Scholar
  17. Elliot, L., Mack, T., 1994. Le Son De Nos Forêts. Centre de conservation de la faune ailée de Montréal, Canada.Google Scholar
  18. Fenton, N.J., Bergeron, Y., 2006. Facilitative succession in a boreal bryophyte community driven by changes in available moisture and light. J. Veg. Sci. 17, 65–76.CrossRefGoogle Scholar
  19. Fisher, J.T., Boutin, S., Hannon, S.J., 2005. The protean relationship between boreal forest landscape structure and red squirrel distribution at multiple spatial scales. Land. Ecol. 20, 73–82.CrossRefGoogle Scholar
  20. Fiske, I., Chandler, R., 2011. Unmarked: an R package for the fitting hierarchical models ofwildlife occurrence and abundance. J. Stat. Softw. 43, 1–23.CrossRefGoogle Scholar
  21. Garden, J.G., McAlpine, C.A., Possingham, H.P., Jones, D.N., 2007. Using multiple survey methods to detect terrestrial reptiles and mammals: what are the most successful and cost-efficient combinations? Wildl. Res. 34, 218–227.Google Scholar
  22. Gauthier, S., Vaillancourt, M.A., Leduc, A., De Grandpré, L., Kneeshaw, D., Morin, H., Drapeau, P., Bergeron, Y., 2008. L’aménagement écosystémique en forêt boréale, 1st ed. Presses de l’Université du Québec, Québec, Canada.Google Scholar
  23. Getschow, C.M., Rivers, P., Sterman, S., Lumpkin, D.C., Tarvin, K.A., 2013. Does gray squirrel (Sciurus carolinensis) response to heterospecific alarm calls depend on familiarity oracoustic similarity? Ethology 119, 983–992.Google Scholar
  24. Gompper, M.E., Kays, R.W., Ray, J.C., Lapoint, S.D., Bogan, DA., Cryan, J.R., 2006. A comparison of noninvasive techniques to survey carnivore communities in northeastern North America. Wildl. Soc. Bull. 34, 1142–1151.CrossRefGoogle Scholar
  25. Green, E., Meagher, T., 1998. Red squirrels, Tamiasciurus hudsonicus, produce predator-class specific alarm calls. Anim. Behav. 55, 511–518.CrossRefGoogle Scholar
  26. Gurnell, J., McDonald, R., Lurz, P.W.W., 2011. Making red squirrels more visible: the use of baited visual counts to monitor populations. Mammal Rev. 41, 244–250.CrossRefGoogle Scholar
  27. Haigh, A., Butler, F., O’Riordan, R.M., 2012. An investigation into the techniques for detecting hedgehogs in a rural landscape. J. Negat. Results 9, 15–26.Google Scholar
  28. Harris, S., Cresswell, W.J., Forde, P.G., Trewhella, W.J., Woodlard, T., Wray, S., 1990. Home range analysis using radiotracking data - a review of problems and techniques particularly as appliedtothe study of mammals. Mammal Rev. 20, 97–123.CrossRefGoogle Scholar
  29. Hubbard, C.R., 2008. A Comparison of Invasive and Non-invasive Techniques for Measuring Fiddler Crab Density in a Salt Marsh. (M.Sc. Dissertation). Georgia Southern University, Statesboro, USA.Google Scholar
  30. Imbeau, L., St-Laurent, M.H., Marzell, L., Brodeur, V., 2015. Current capacity to conduct ecologically sustainable forest management in northeastern Canada reveals challenges forconservation of biodiversity. Can. J. For. Res. 45, 567–578.CrossRefGoogle Scholar
  31. Kéry, M., Schmidt, B.R., 2008. Imperfect detection and its consequences for monitoring in conservation. Community Ecol. 9, 207–216.CrossRefGoogle Scholar
  32. Kellner, K.F., Swihart, R.K., 2014. Accounting for imperfect detection in ecology: a quantitative review. PLoS One 9, e111436.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Klenner, W., Charles, J., Krebs, C.J., 1991. Red squirrel population dynamics I. The effect of supplemental food ondemography. J. Anim. Ecol. 60, 961–978.Google Scholar
  34. Larsen, K.W., Boutin, S., 1994. Movements, survival, and settlement of red squirrel (Tamiasciurus hudsonicus) offspring. Ecology 75, 214–223.CrossRefGoogle Scholar
  35. Larsen, K.W., Boutin, S., 1995. Exploring territory quality in the North American red squirrel through removal experiments. Can.J. Zool. 73, 1115–1122.CrossRefGoogle Scholar
  36. Larsen, K.W., 1993. Female Reproductive Success in the North American Red Squirrel (Tamiasciurus hudsonicus). Ph. D. Thesis. Department of Zoology, University of Alberta, Edmonton.Google Scholar
  37. Lishak, R.S., 1984. Alarm vocalizations of adult gray squirrels. J. Mammal. 65, 681–684.CrossRefGoogle Scholar
  38. MacKenzie, D.I., Bailey, L.L., 2004. Assessing the fit of site-occupancy models. J. Agric. Biol. Environ. Stat. 9, 300–318.CrossRefGoogle Scholar
  39. MacKenzie, D.I., Nichols, J.D., Lachman, G.B., Droege, S., Andrew Royle, J.A., Langtimm, C.A., 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.CrossRefGoogle Scholar
  40. MacKenzie, D.I., Nichols, J.D., Hines, J.E., Knutson, M.G., Franklin, A.B., 2003. Estimating site occupancy, colonization and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207.CrossRefGoogle Scholar
  41. MacKenzie, D.I., Nichols, J.D., Royle, J.A., Pollock, K.H., Bailey, L.L., Hines, J.E., 2006. Occupancy Estimation and Modelling. Academic Press Burlington, USA.Google Scholar
  42. Martin, J.L., Joron, J., 2003. Nest predation in forest birds: influence of predator type and predator’s habitat quality. Oikos 102, 641–653.CrossRefGoogle Scholar
  43. Mazerolle, M.J., Bailey, L.L., Kendall, W.L., Royle, J.A., Converse, S.J., Nichols, J.D., 2007. Makinggreat leaps forward: accounting fordetectability in herpetological field studies. J. Herpetol. 41, 672–689.CrossRefGoogle Scholar
  44. Mazerolle, M.J., 2015. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). R Package Version 2.0-3.Google Scholar
  45. Mori, E., Ancillotto, L., Menchetti, M., Romeo, C., Ferrari, N., 2013. Italian red squirrels and introduced parakeets: victims or perpetrators? Hystrix 24, 195–196.Google Scholar
  46. Mortelliti, A., Boitani, L., 2008. Inferring red squirrel (Sciurus vulgaris) absence with hair tubes surveys: a sampling protocol. Eur. J. Wildl. Res. 54, 353–356.CrossRefGoogle Scholar
  47. Newson, S.E., Rexstad, E.A., Baillie, S.R., Buckland, S.T., Aebischer, N.J., 2010. Population change of avian predators and grey squirrels in England: is there evidence foran impact on avian prey populations? J. Appl. Ecol. 47, 244–252.CrossRefGoogle Scholar
  48. Otto, C.R.V., Roloff, G.J., 2011. Using multiple methods to assess detection probabilities of forestfloorwildlife.J. Wildl. Manag. 75, 423–431.CrossRefGoogle Scholar
  49. Pacifici, K., Simons, T.R., Pollock, K.H., 2008. Effects of vegetation and background noise on the detection process in auditory avian point-count surveys. Auk 125, 600–607.Google Scholar
  50. Patterson, J.E., Malcolm, J.R., 2010. Landscape structure and local habitat characteristics as correlates of Glaucomys sabrinus and Tamiasciurus hudsonicus occurrence. J. Mammal. 91, 642–653.CrossRefGoogle Scholar
  51. Pearce, J.L., Boyce, M.S., 2006. Modelling distribution and abundance with presence-only data. J. Appl. Ecol. 43, 405–412.CrossRefGoogle Scholar
  52. Petitot, M., Manceau, N., Geniez, P., Besnard, A., 2014. Optimizing occupancy surveys by maximizing detection probability: application to amphibian monitoring in the Mediterranean region. Ecol. Evol. 4, 3538–3549.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Pollock, K.H., Nichols, J.D., Simons, T.R., Farnworth, G.L., Bailey, L.L., Sauer, J.R., 2002. Large scale wildlife monitoring studies: statistical methods for design and analysis. Environmetrics 13, 1–15.CrossRefGoogle Scholar
  54. Pradel, R., 1996. Utilization of capture-mark-recapture forthe study of recruitment and population growth rate. Biometrics 52, 703–709.CrossRefGoogle Scholar
  55. Price, K., Boutin, S., Ydenberg, R., 1990. Intensity of territorial defense in red squirrels: an experimental test of the asymmetric warofattrition. Behav. Ecol. Sociobiol. 27, 217–222.CrossRefGoogle Scholar
  56. R Development Core Team, 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  57. Ralph, C.J., Sauer, J.R., Droege, S., 1995. Monitoring bird populations by point counts. USDA Forest Service, Pacific Southwest Research Station. General Technical Report PSW-GTR-149, Albany, USA.Google Scholar
  58. Randler, C., 2006. Red squirrels (Sciurus vulgaris) respond to alarm calls of Eurasian jays (Garrulus glandarius). Ethology 112, 411–416.CrossRefGoogle Scholar
  59. Reitsma, L.R., Holmes, R.T., Sherry, T.W., 1990. Effects of removal of red squirrels, Tamiasciurus hudsonicus, and Eastern chipmunks, Tamias striatus, on nest predation in a Northern hardwood forest: an artificial nest experiment. Oikos 57, 375–380.CrossRefGoogle Scholar
  60. Richards, D.G., 1981. Environmental acoustics and censuses of singing birds. Stud. Avian Biol. 6, 297–300.Google Scholar
  61. Richmond, O.M.W., Hines, J.E., Beissinger, S.R., 2010. Two-species occupancy models: a new parameterization applied to co-occurrence of secretive rails. Ecol. Appl. 20, 2036–2046.PubMedCrossRefGoogle Scholar
  62. Russell, R.E., Lehmkuhl, J.F., Buckland, S.T., Saab, VA., 2010. Short-term responses of red squirrels to prescribed burning in the Interior Pacific Northwest, USA. J. Wildl. Manag. 74, 12–17.CrossRefGoogle Scholar
  63. Scott, J.M., Heglund, P.J., Morrison, M.L., Haufler, J.B., Raphael, M.G., Wall, WA., Samson, F.B., 2002. Predicting Species Occurences: Issues of Scale and Accuracy, 1st ed. Island Press, Washington, USA.Google Scholar
  64. Selonen, V., Varjonen, R., Korpimäki, E., 2015. Immediate or lagged responses of a red squirrel population to pulsed resources. Oecologia 177, 401–411.PubMedCrossRefGoogle Scholar
  65. Shonfield, J., Taylor, R.W., Boutin, S., Humphries, M.M., McAdam, A.G., 2012. Territorial defence behaviour in red squirrels is influenced by local density. Behaviour 149, 369–390.CrossRefGoogle Scholar
  66. Siepielki, A.M., 2006. A possible role for red squirrels in structuring breeding bird communities in lodgepole pine forests. Condor 108, 232–238.CrossRefGoogle Scholar
  67. Sieving, K.E., Willson, M.F., 1998. Nest predation and avian species diversity in northwestern forest understory. Ecology 79, 2391–2402.CrossRefGoogle Scholar
  68. Sjögren-Gulve, P., Hanski, I., 2000. Metapopulation viability analysis using occupancy models. Ecol. Bull. 48, 53–71.Google Scholar
  69. Smith, J.B., Jenks, A.J., Klaver, R.W., 2007. Evaluating detection probabilities for American marten in the Black Hill, South Dakota. J. Wildl. Manag. 71, 2412–2416.CrossRefGoogle Scholar
  70. Smith, C.C., 1978. Structure and function of the vocalizations of tree squirrels (Tamiasciurus). J. Mammal. 59, 793–808.CrossRefGoogle Scholar
  71. Snyder, D.P., 1982. Tamias striatus. Mamm. Species 168, 1–8.CrossRefGoogle Scholar
  72. Steele, MA., 1998. Tamiasciurus hudsonicus. Mamm. Species 586, 1–9.CrossRefGoogle Scholar
  73. Wauters, L., Dhondt, A.A., 1993. Immigration pattern and success in red squirrels. Behav. Ecol. Sociobiol. 33, 159–167.CrossRefGoogle Scholar
  74. Wheatley, M., Larsen, K.W., Boutin, S., 2002. Does density reflect habitat quality for North American red squirrels during a spruce-cone failure? J. Mammal. 83, 716–727.CrossRefGoogle Scholar
  75. Willson, M.F., De Santo, T.L., Sieving, K.E., 2003. Red squirrels and predation risk to bird nests in northern forests. Can.J. Zool. 81, 1202–1208.CrossRefGoogle Scholar
  76. Wilson, D.R., Goble, A.R., Boutin, S., Humphries, M.M., Coltman, D.W., Gorrell, J.C., Shonfield, J., McAdam, A.G., 2015. Red squirrels use territorial vocalizations for kin discrimination. Anim. Behav. 107, 79–85.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde, e. V. DGS 2017

Authors and Affiliations

  • Emilie E. Chavel
    • 1
    Email author
  • Marc J. Mazerolle
    • 2
  • Louis Imbeau
    • 1
  • Pierre Drapeau
    • 3
  1. 1.Centre d’étude de laforêt (CEF), Institut de Recherche sur les Forêts (IRF)Université du Québec en Abitibi-Témiscamingue (UQAT)Rouyn-NorandaCanada
  2. 2.Centre d’étude de la forêt (CEF), Département des sciences du bois et de la forêtUniversité LavalQuébecCanada
  3. 3.Centre d’étude de laforêt (CEF), Département des sciences biologiquesUniversité du Québec à Montréal (UQAM)MontréalCanada

Personalised recommendations