Mammalian Biology

, Volume 81, Issue 6, pp 604–611 | Cite as

Variation in Hipposideros pratti in China based on morphology and mitochondrial genes

  • Hongwei Zhou
  • Yanmei Wang
  • Jie Wu
  • Ke Wang
  • Dejing Cai
  • Yanzhen BuEmail author
  • Hongxing NiuEmail author
Original investigation


Hipposideros pratti is mainly distributed in mainland China. Many geographical barriers, which might cause different populations of H. pratti to appear differentiation, exist in its distribution areas. Whether the differentiation having reached the levels for subspecies classification requires further study. Currently, there is not a comprehensive study for the external measurements and molecular sequences of H. pratti. The taxonomic status of H. pratti subspecies remains uncertain. To explore the differences and taxonomic status of H. pratti, we conducted a series of surveys on bats in four different areas of China from 2012 to 2015. We performed multivariate morphometric analyses using 16 external and 25 skull measurements and analysed sequence data of two mitochondrial genes (Cytb and COI). Scatter plots indicated that both external and cranial measurements of samples from the four geographical regions separated into two groups: specimens from Western mountain and plateau subregion in Central China (CW) and Southwest mountainous subregion in Southwest China (WS) gathered into a CW-WS group, and specimens from Eastern hilly and plain subregion in Central China (CE) and Min-Guang coastal subregion in Southern China (SM) gathered into a CE-SM group. The divergence between the CW-WS and CE-SM groups for the Cytb and COI genes were 1.6–2.4% and 1.9–2.3%, respectively, which reached the levels required for identifying subspecies classification according to previous studies. Moreover, in the phylogenetic tree based on Cytb and COI sequences, specimens from the regions CW and WS formed a clade, and specimens from the regions CE and SM formed another clade. Both the morphological and molecular results support the conclusion that H. pratti from the CW-WS group represents H. p. pratti, and the CE-SM populations should be termed H. p. sinicus.


Hipposideros pratti Subspecies Morphology Cytb COI 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, G.M., 1940. The Mammals of China and Mongolia. The American Museum of Natural History, New York.Google Scholar
  2. Bates, P.J.J., Harrison, D.L., 1997. Bats of the Indian Subcontinent. Harrison Zoological Museum, Sevenoaks, United Kingdom.Google Scholar
  3. Bradley, R.D., Baker, R.J., 2001. A test of the genetic species concept: cytochrome-b sequences and mammals. J. Mammal. 82, 960–973.CrossRefGoogle Scholar
  4. Bu, Y.Z., Wang, Y.M., Zhang, C., Zhang, H.X., Zhao, L.Z., Zhou, H.X., Yu, Y., Niu, H.X., 2015. Study of roost selection and habits of a bat: Hipposideros armiger in mainland China. Pak. J. Zool. 47, 59–69.Google Scholar
  5. Chen, M., Feng, J., Li, Z.X., Zhou, J., Zhao, H.H., Zhang, S.Y., Sheng, L.X., 2002. Echolocation sound waves, morphological features and foraging strategies in Hipposideros pratti. Chin. J. Appl. Ecol. 13, 1629–1632.Google Scholar
  6. Corbet, G.B., Hill, J.E., 1992. The Mammals of the Indomalayan Region: A Systematic Review. Natrual History Museum Publications Oxford. University Press, London, pp. 104–117.Google Scholar
  7. Csorba, G., Ujhelyi, P., Thomas, N., 2003. Horseshoe Bats of the Worl. Alana Books. Dai, W., Wang, X.M., Yang, H., 2005. Application of mtDNA to studies on molecular systematics of animals. J. Tianjin Agr. Coll. 12, 48–53.Google Scholar
  8. Degli Esposti, M., Vries, D.S., Crimi, M., Ghelli, A., Patarnello, T., Meyer, A., 1993. Mitochondrial cytochrome b: evolution and structure of the protein. BBA-Bioenerg. 1143, 243–271.CrossRefGoogle Scholar
  9. Francis, CM., Borisenko, A.V., Ivanova, N.V., Eger, J.L., Lim, B.K., Guillen-Servent, A., Kruskop, S.V., Mackie, I., Hebert, P.D.N., 2010. The role of DNA barcodes in understanding and conservation of mammal diversity in Southeast Asia. PLoS One. 5, e1–12.CrossRefGoogle Scholar
  10. Gu, X.M., 2006. The karyotypes of six species of bats fromguizhou. Chin.J. Zool. 41, 112–116.Google Scholar
  11. Hendrichsen, D.K., Bates, P.J.J., Hayes, B.D., Walston, J.L., 2001. Recent records of bats (Mammalia: chiroptera) from Vietnam with six species new to the country. Myotis 39, 35–122.Google Scholar
  12. Huelsenbeck, J.P., Ronquist, F., 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.CrossRefGoogle Scholar
  13. Irwin, D.M., Kocher, T.D., Wilson, A.C., 1991. Evolution of the cytochrome b gene of mammals. J. Mol. Evol. 32, 128–144.CrossRefGoogle Scholar
  14. Koopman, K.F., 1993. Order chiroptera. In: Wilson, D.E., Reeder, D.M. (Eds.), Mammal Species of the World, a Taxonomic and Geographic Reference., 2nd ed. Smithsonian Institution Press, Washington.Google Scholar
  15. Li, J.J., Fang, X.M., 1999. Uplift of the Tibetan Plateau and environmental changes. Chin. Sci. Bull. 44, 2117–2124.CrossRefGoogle Scholar
  16. Librado, P., Rozas, J., 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.CrossRefGoogle Scholar
  17. Lin, A.Q., Csorba, G., Li, L.F., Jiang, T.L., Lu, G.J., Thong, V.D., Soisook, P., Sun, K.P., Feng, J., 2014. Phylogeography of Hipposideros armiger (Chiroptera: hipposideridae) in the Oriental Region: the contribution of multiple Pleistocene glacial refugia and intrinsic factors to contemporary population genetic structure. J. Biogeogr. 41, 317–327.CrossRefGoogle Scholar
  18. Lu, G.J., Lin, A.Q., Luo, J.H., Blondel, D.V., Meiklejohn, K.A., Sun, K.P., Feng, J., 2013. Phylogeography of the Ricketts big-footed bat, Myotis pilosus (Chiroptera: vespertilionidae): a novel pattern of genetic structure of bats in China. BMC Evol. Biol. 13, 241.CrossRefGoogle Scholar
  19. Mao, X.G., He, G.M., Hua, P.Y., Jones, G., Zhang, S.Y., Rossiter, S.J., 2013. Historical introgression and the persistence of ghost alleles in the intermediate horseshoe bat (Rhinolophus affinis). Mol. Ecol. 22, 1035–1050.CrossRefGoogle Scholar
  20. Mayr, E., Linsley, E.G., Usinger, R.L., 1953. Methods and Principles of Systematic Zoology. Toronto and London: McGraw Hill Book Company, New York, pp. 23–39 (123–154).Google Scholar
  21. Murray, S.W., Campbell, P., Kingston, T., Zubaid, A., Francis, CM., Kunz, T.H., 2012. Molecular phylogeny of hipposiderid bats from southeast Asia and evidence of cryptic diversity. Mol. Phylogenet. Evol. 62, 597–611.CrossRefGoogle Scholar
  22. Posada, D., Crandall, K.A., 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.CrossRefGoogle Scholar
  23. Simmons, N.B., 2005. Mammal species of the world: a taxonomic and geographic reference. In: Wilson, D.E., Reeder, D.M. (Eds.), Order Chiroptera. The Johns Hopkins University Press, Baltimore, MD, pp. 312–529.Google Scholar
  24. Smith, A.T., Xie, Y., 2009. A Guide to the Mammals of China. Hunan Education Press, Changsha China, pp. 296–301.Google Scholar
  25. Storz, J.F., Balasingh, J., Bhat, H.R., Nathan, D.P., Paramanantha Swami Doss, D., Prakash, A.A., Kunz, T.H., 2001. Clinal variation in body size and sexual dimorphism in an Indian fruit bat, Cynopterus sphinx (Chiroptera: pteropodidae). Biol. J. Linn. Soc. 72, 17–31.CrossRefGoogle Scholar
  26. Sun, K.P., Luo, L., Kimball, R.T., Wei, X.W., Jin, L.R., Jiang, T.L., Li, G.H., Feng, J., 2013. Geographic variation in the acoustic traits of greater horseshoe bats: testing the importance of drift and ecological selection in evolutionary processes. PLoS One 8, e70368.CrossRefGoogle Scholar
  27. Swofford, D.L., 2000. PAUP*: Phylogenetic Analysis Using Parsimony (* and Other Methods), Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  28. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.CrossRefGoogle Scholar
  29. Thomas, O., 1891. Description of three newbats in the British Museum collection. Ann. Mag. Nat. Hist. 7, 527–530.CrossRefGoogle Scholar
  30. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.CrossRefGoogle Scholar
  31. Wang, S., Xie, Y., 2009. China Species Red List: Vol II Vertebrates Part 2. Higher Education Press, Beijing.Google Scholar
  32. Wang, Y.X., 2003. A Complete Checklist of Mammal Species and Subspecies in China: a Taxonomic and Geographic Reference. China Forestry Publishing House, Beijing, China.Google Scholar
  33. Wei, L., Gan, Y.M., Li, Z.Q., Lin, Z.H., Hong, T.Y., Zhang, LB., 2011. Comparisons of echolocation calls and wing morphology among six sympatric bat species. Acta Theriol. Sin. 31, 155–163.Google Scholar
  34. Wiens, J.J., Penkrot, T.A., 2002. Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards. Syst. Biol. 51, 69–91 (Sceloporus).Google Scholar
  35. Worthington, W.J., Barratt, E., 1996. A non-lethal method of tissue sampling for genetic studies of chiropterans. Bat Res. News. 37, 1–3.Google Scholar
  36. Wu, Y., Masashi, H., Shi, H.Y., Liu, H., 2006. Further study on karyology of bats (Mammalia: chiroptera) from Sichuan. China J. Guangzhou Univ. 5, 20–24.Google Scholar
  37. Xu, W.X., Zhou, Z.M., Zhang, J.Q., Wu, Y., Li, Y.C., Hu, J.C., 2005. Study on geographical of skull morphology of Rhinolophus sinicus. Sichuan J. Zool. 24, 469–472.Google Scholar
  38. Xu, N., Li, J., Shi, Q., Fu, Z.Y., Tang, J., Chen, Q.C, 2014. The study on group processing of Hipposideros pratti inferior colliculus to constant frequency component of echolocation signals. Acta Theriol Sin. 34, 217–224.Google Scholar
  39. Zhang, R.Z., Jin, S.K., Quan, G.Q., Li, S.H., Ye, Z.Y., Wang, F.G., Zhang, M.L., 1997. Distribution of Mammalian Species in China. China Forestry Publishing House, Beijing, China.Google Scholar
  40. Zhang, W.D., 1985. A study on karyotypes of the bats Tadarida teniotis insignis Blyth and Hipposideros pratti Thomas. Acta Theriol. Sin. 5, 43–45.Google Scholar
  41. Zhao, L.Z., Bu, Y.Z., He, X.P., Zhou, H.X., Yu, Y., Niu, H.X., 2014. Morphological and cytb sequence divergence of hipposideros larvatus from hainan and guangxi provinces, China. Acta Theriol. Sin. 34, 278–285.Google Scholar
  42. Zhao, L.Z., Bu, Y.Z., Zhou, H.X., Zhou, H.W., Zhang, Z.X., Niu, H.X., 2015. Differences in Hipposideros pomona from three geographical regions in China based on morphology and molecular sequences data. J. Mammal. 96, 1305–1316.CrossRefGoogle Scholar
  43. Zhou, Z.M., Xu, W.X., Wu, Y., Li, Y.C., Hu, J.C., 2005. Morphometric characteristics of three subspecies of Rhinolophus affinis in China. Zool. Res. 26, 645–651.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2016

Authors and Affiliations

  1. 1.College of Life ScienceHenan Normal UniversityXinxiangChina
  2. 2.Administration Bureau of Dongzhai National Nature ReserveLuoshan, Henan ProvinceChina

Personalised recommendations