Mammalian Biology

, Volume 81, Issue 6, pp 551–557 | Cite as

Seasonal variations and population parameters explaining the use of space of neotropical rodents

  • Clarisse R. RochaEmail author
  • Raquel Ribeiro
  • Jader Marinho-Filho
Original investigation


Space use by animals has been studied for decades; however, gaps still exist in the understanding of how it is affected by biological and environmental factors. The aim of this study was to determine how biological traits, population parameters and seasonal variations affect the use of space by rodents in a tropical savannah environment. This study was performed in two grids in a grassland area at Aguas Emendadas Ecological Station between January 2004 and December 2013. The trapping sessions lasted six consecutive days and were performed monthly. Sherman traps, which were baited and reset daily, were used to capture the animals. The movement area was estimated using the minimum convex polygon method, and the mean movement distance was used to investigate the factors that affect the movement of the rodents. The hypothesis that a significant difference exists in the movement area size among species was corroborated; however, this difference was not related to body weight. As a general pattern for these rodents, males displayed larger movement areas than females. Movement area size showed an inverse relationship to population density. The understanding of the factors that affect the space use by rodents are complex and the interactions of these factors may also modulate space use by rodents. Our results suggest that space use is also affected by climatic variations.


Calomys tener Home range Necromys lasiurus Thalpomys lasiotis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alho, C.J.R., Souza, M.J., 1982. Home range and use of space in Zygodontomys lasiurus (Cricetidae, Rodentia) in the central Brazil. Ann. Carnegie Mus. 51, 127–132.Google Scholar
  2. Ambrose, H.W., 1973. An experimental study of some factors affecting the spatial and temporal activity of Microtus pennsylvanicus. J. Mammal. 54, 79–110.CrossRefGoogle Scholar
  3. Börger, L., Franconi, N., Ferretti, F., Meschi, F., De Michele, G., Gantz, A., Coulson, T., 2006. An integrated approach to identify spatiotemporal and individual-level determinants of animal home range size. Am. Nat. 168, 471–485.PubMedCrossRefGoogle Scholar
  4. Belcher, C.A., Darrant, J.P., 2004. Home range and spatial organization of the marsupial carnivore, Dasyurus maculatus (Marsupialia: Dasyuridae) in south-eastern Australia. J. Zool. 262, 271–280.CrossRefGoogle Scholar
  5. Burt, W.H., 1943. Territoriality and home range concepts as applied to mammals. J. Mammal. 24, 346–352.CrossRefGoogle Scholar
  6. Cáceres, N.C., Graipel, M.E., Monteiro-Filho, E.L.A., 2010. Técnicas de observacão e amostragem de marsupiais. In: Reis, N.R., Peracchi, A.L., Rossaneis, B.K., Fregonezi, M.N. (Eds.), Técnicas de estudos aplicadas aos mamíferos silvestres brasileiros. Technical Books Editora, Rio de Janeiro, pp. 21–36.Google Scholar
  7. Cardoso, M.R.D., Marcuzzo, F.F.N., Barros, J.R., 2015. Classificacão Climática de Köppen-Geiger para o Estado de Goiás e o Distrito Federal. Acta Geogr. 8, 40–55.Google Scholar
  8. Crawley, M.J., 2007. The R Book. Wiley, Chichester, UK.CrossRefGoogle Scholar
  9. Damuth, J., 1981. Population density and body size in mammals. Nature 290, 699–700.CrossRefGoogle Scholar
  10. Erlinge, S., Hoogenboom, I., Agrell, J., Nelson, J., Sandell, M., 1990. Density-related home-range size and overlap in adult field voles (Microtus agrestis) in Southern Sweden. J. Mammal. 71, 597–603.CrossRefGoogle Scholar
  11. Fernandes, F.R., Cruz, L.D., Martins, E.G., dos Reis, S.F., 2010. Growth and home range size of the gracile mouse opossum Gracilinanus microtarsus (Marsupialia: Didelphidae) in Brazilian cerrado.J. Trop. Ecol. 26, 185–192.CrossRefGoogle Scholar
  12. Gaulin, S.J., FitzGerald, R.W., 1986. Sex differences in spatial ability: an evolutionary hypothesis and test. Am. Nat, 74–88.Google Scholar
  13. Getz, L.L., McGuire, B., 2008. Factors influencing movement distances and home ranges of the short-tailed shrew (Blarina brevicauda). Northeast. Nat., 293–302.Google Scholar
  14. Getz, L.L., Oli, M.K., Hofmann, J.E., McGuire, B., Ozgul, A., 2005. Factors influencing movement distances of two species of sympatric voles. J. Mammal. 86, 647–654.CrossRefGoogle Scholar
  15. Gomez, D., Sommaro, L., Steinmann, A., Chiappero, M., Priotto, J., 2011. Movement distances of two species of sympatric rodents in linear habitats of Central Argentine agro-ecosystems. Mamm. Biol. 76, 58–63.CrossRefGoogle Scholar
  16. Heiberger, R.M., 2015. In: Heiberger, Holland (Eds.), Statistical Analysis and Data Display. R Package Version 2, pp. 1–32.Google Scholar
  17. Jennrich, R., Turner, F., 1969. Measurement of non-circular home range. J. Theor. Biol. 22, 227–237.PubMedCrossRefGoogle Scholar
  18. Kenward, R.E., Walls, S.S., South, A.B., Casey, N.M., 2008. Ranges8: Forthe Analysis of Tracking and Location Data. Anatrack Ltd., Wareham, UK.Google Scholar
  19. Lindstedt, S.L., Miller, B.J., Buskirk, S.W., 1986. Home range, time, and body size in mammals. Ecology 67, 413–418.CrossRefGoogle Scholar
  20. Loretto, D., Vieira, M.V., 2005. The effects of reproductive and climatic seasons on movements in the black-eared opossum (Didelphis aurita Wied-Neuwied, 1826). J. Mammal. 86, 287–293.CrossRefGoogle Scholar
  21. Múrua, R., Gonzales, LA., Meserve, P.L., 1986. Population ecology of Oryzomys longicaudatus philippii (Rodentia: Cricetidae) in southern Chile. J. Anim. Ecol. 55, 281–293.CrossRefGoogle Scholar
  22. Magnusson, W.E., De Lima Francisco, A., Sanaiotti, T.M., 1995. Home-range size and territoriality in Bolomys lasiurus (Rodentia: Muridae) in an Amazonian savanna. J. Trop. Ecol. 11, 179–188.CrossRefGoogle Scholar
  23. Makarieva, A.M., Gorshkov, V.G., Li, B.L., 2005. Why do population density and inverse home range scale differently with body size? Implications for ecosystem stability. Ecol. Complex. 2, 259–271.CrossRefGoogle Scholar
  24. Mares, M.A., Adams, R., Lacher Jr., T.E., Willig, M.R., 1980. Home range dynamics in chipmunks: responses to experimental manipulation of population density and distribution. Ann. Carnegie Mus. 4913, 193–201.Google Scholar
  25. Mitchell, M.S., Powell, R.A., 2004. A mechanistic home range model for optimal use of spatially distributed resources. Ecol. Model. 177, 209–232.CrossRefGoogle Scholar
  26. Moorcroft, P.R., 2012. Mechanistic approaches to understanding and predicting mammalian space use: recent advances, future directions. J. Mammal. 93, 903–916.CrossRefGoogle Scholar
  27. O’Farrell, M.J., 1974. Seasonal activity patterns of rodents in a Sagebrush Community. J. Mammal. 55, 809–823.CrossRefGoogle Scholar
  28. Oliveira, CM., Frizzas, M.R., 2008. Insetos do Cerrado: distribuicão estacional e abundância. Boletim de Pesquisa e Desenvolvimento. Embrapa—CPAC, Planaltina, Brasil.Google Scholar
  29. Oliveira-Filho, A.T., Ratter, J.A., 2002. In: Oliveira, P.S., Marquis, R.J. (Eds.), Vegetation Physiognomies and Woody Flora of the Cerrado Biome. The Cerrado of Brazil Editora Columbia University, Nova Iorque, USA, pp. 91–119.Google Scholar
  30. Ostfeld, R.S., 1985. Limiting resources and territoriality in microtine rodents. Am. Nat. 126, 1–15.CrossRefGoogle Scholar
  31. Perry, G., Garland, T., 2002. Lizard home ranges revisited: effects of sex, body size, diet, habitat, and phylogeny. Ecology 83, 1870–1885.CrossRefGoogle Scholar
  32. Pinheiro, F., Diniz, I., Coelho, D., Bandeira, M., 2002. Seasonal pattern of insect abundance in the Brazilian cerrado. Austral Ecol. 27, 132–136.CrossRefGoogle Scholar
  33. Pinheiro, J., Bates, D., Debroy, S., 2011. R Package. nlme: Linear and Nonlinear Mixed Effects Models, 3 ed. Deepayan Sarkarand R Development Core Team.Google Scholar
  34. Pires, A.d.S., Fernandez, FAd.S., Feliciano, B.R., Freitas, D.d., 2010. Use of space by Necromys lasiurus (Rodentia, Sigmodontinae) in a grassland among Atlantic Forest fragments. Mamm. Biol. 75, 270–276.CrossRefGoogle Scholar
  35. Powell, R.A., Mitchell, M.S., 2012. What is a home range. J. Mammal. 93, 948–958.CrossRefGoogle Scholar
  36. Price, M.V., Waser, N.M., Bass, T.A., 1984. Effects of moonlight on microhabitat use by desert rodents. J. Mammal. 65, 353–356.CrossRefGoogle Scholar
  37. Priotto, J., Steinmann, A., Polop, J., 2002. Factors affecting home range size and overlap in Calomys venustus (Muridae: Sigmodontinae) in Argentine agroecosystems. Mamm. Biol. 67, 97–104.CrossRefGoogle Scholar
  38. Proenca, C., Oliveira, R.S., Silva, A.P., 2000. Flores e frutos do Cerrado. Universidade de Brasília, São Paulo, Brasil.Google Scholar
  39. Ribeiro, R., Marinho-Filho, J., 2005. Estrutura da comunidade de pequenos mamíferos (Mammalia, Rodentia) da Estacão Ecológica de Águas Emendadas, Planaltina, Distrito Federal, Brasil. Rev. Bras. Zool. 22, 898–907.CrossRefGoogle Scholar
  40. Ribeiro, J.F., Walter, B.M.T., 2001. As matas de galeria no contexto do bioma Cerrado. In: Ribeiro, J.F., Fonseca, C.E.L., Sousa-Silva, J.C. (Eds.), Cerrado: caracterizacão e recuperacão de matas de galeria. EMBRAPA, Planaltina, Brasil, pp. 29–47.Google Scholar
  41. Ribeiro, R., Rocha, C., Marinho-Filho, J., 2011. Natural history and demography of Thalpomys lasiotis (Thomas, 1916), a rare and endemic species from the Brazilian savanna. Acta Theriol. 56, 275–282.CrossRefGoogle Scholar
  42. Rocha, C.R., Ribeiro, R., Takahashi, F.S.C., Marinho-Filho, J., 2011. Microhabitat use by rodent species in a central Brazilian cerrado. Mamm. Biol. 76, 651–653.CrossRefGoogle Scholar
  43. Sano, S.M., Almeida, S.P., 1998. Cerrado: ambiente e flora. EMBRAPA-CPAC, Planaltina, Brasil.Google Scholar
  44. Schoener, T.W., 1968. Sizes of feeding territories among birds. Ecology 49, 123–141.CrossRefGoogle Scholar
  45. Sikes, R.S., Gannon, W.L., 2011. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 92, 235–253.CrossRefGoogle Scholar
  46. Silva, NAP. d., Frizzas, M.R., Oliveira, C.M.d., 2011. Seasonality in insect abundance in the Cerrado of Goiás State, Brazil. Rev. Bras. Entomol. 55, 79–87.CrossRefGoogle Scholar
  47. Slade, N.A., Russell, L.A., 1998. Distances as indices to movements and home-range size from trapping records of small mammals. J. Mammal. 79, 346–351.CrossRefGoogle Scholar
  48. Spencer, W.D., 2012. Home ranges and the value of spatial information. J. Mammal. 93, 929–947.CrossRefGoogle Scholar
  49. Swihart, R.K., Slade, N.A., Bergstrom, B.J., 1988. Relating body size to the rate of home range use in mammals. Ecology 69, 393–399.CrossRefGoogle Scholar
  50. Vieira, E.M., Baumgarten, L.C., 1995. Daily activity patterns of small mammals in a cerrado area from central Brazil. J. Trop. Ecol. 11, 255–262.CrossRefGoogle Scholar
  51. Vieira, E., Baumgarten, L., Paise, G., Becker, R., 2010. Seasonal patterns and influence of temperature on the daily activity of the diurnal neotropical rodent Necromys lasiurus. Can. J. Zool. 88, 259–265.CrossRefGoogle Scholar
  52. Wolff, J.O., Edge, W.D., Bentley, R., 1994. Reproductive and behavioral biology of the gray-tailed vole. J. Mammal. 75, 873–879.CrossRefGoogle Scholar
  53. Wolff, J.O., 1993. Why area female small mammals territorial? Oikos 68, 6.Google Scholar
  54. Zuur, A., Ieno, E., Walker, N., Saveliev, A., Smith, G., 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York, USA.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2016

Authors and Affiliations

  • Clarisse R. Rocha
    • 1
    Email author
  • Raquel Ribeiro
    • 2
  • Jader Marinho-Filho
    • 1
  1. 1.Lab. de Mamíferos, Dept. Zoologia, Instituto de Ciências BiológicasUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Instituto de Estudos em Saúde e Biológicas—IESBUniversidade Federal do Sul e Sudeste do ParáMarabáBrazil

Personalised recommendations