Advertisement

Mammalian Biology

, Volume 81, Issue 6, pp 571–578 | Cite as

What are you eating? A stable isotope insight into the trophic ecology of short-beaked common dolphins in the Southwestern Atlantic Ocean

  • Rocío Loizaga de CastroEmail author
  • Fabiana Saporiti
  • Damián G. Vales
  • Néstor A. García
  • Luis Cardona
  • Enrique A. Crespo
Original investigation

Abstract

As the feeding habits of marine mammals are particularly difficult to observe, stable isotope analysis has become an essential tool to investigate several aspects of dolphin’s trophic ecology. Short-beaked common dolphins (Delphinus delphis) occur off Argentina coastline from 36°S to 42°S, but nothing is known about latitudinal changes in diet. A stable isotope analysis has been performed on three short-beaked common dolphins groups: Buenos Aires group (n = 20), Golfo San Matías inshore group (n = 24), and Golfo San Matías offshore group (n = 16). Highly significant differences in average δ15Nskin values were found among the three groups of dolphins considered. Differences were also statistically significant for the average δ13Cskin and Suess corrected δ13Cskin values. Furthermore, no significant differences were found in the δ13Cskin values of the dolphins from the inshore group sampled during summer and winter seasons at Golfo San Matías, although the δ15Nskin values changes seasonally, suggesting that probably dolphins forage at a higher trophic level in summer. The SIAR model indicated that juvenile Argentine hake (Merluccius hubbsi) had the highest mean feasible contribution to the diet of short-beaked common dolphins inhabiting the continental shelf off Buenos Aires and northern Patagonia, whereas the Argentine anchovy (Engraulis anchoita) did it for short-beaked common dolphins inhabiting the Golfo San Matías The results obtained in this study increase the knowledge of trophic ecology for high trophic level predators such as short-beaked common dolphins along the Argentina coast in support of effective conservation and management programs.

Keywords

Short-beaked common dolphins Delphinus delphis Stable isotopes Trophic ecology Argentina 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acha, E.M., Mianzan, H.W., Guerrero, R.A., Favero, M., Bava, J., 2004. Marine fronts at the continental shelves of austral South America, physical and ecological processes. J. Mar. Syst. 44, 83–105.CrossRefGoogle Scholar
  2. Amos, W., Hoelzel A.R., 1991. Long-term preservation of whale skin for DNA analysis. Report of IWC, Special Issue 13, 99–103.Google Scholar
  3. Aubone, A., Bezzi, S., Castrucci, R., Dato, C., Ibañez, P., Irusta, G., Pérez, M., Renzi, M., Santos, B., Scarlato, N., Simonazzi, M., Tringali, L., Villarino, M.F., 2000. Los recursos pesqueros del Mar Argentinoy su relacióncon las pesquerías. II. Recursos a recuperar: Merluza (Merluccius hubbsi). In: Bezzi, S., Akselman, R., Boschi, E. (Eds.), Síntesis del estado de las pesquerías marítimas argentinas y de la Cuenca del Plata. Años 1997–1998, con una actualización de 1999. Publicaciones Especiales. INIDEP, Mar del Plata, pp. 29–39.Google Scholar
  4. Aurioles-Gamboa, D., Rodríguez-Pérez, M., Sánchez-Velasco, L., Lavín, M., 2013. Habitat, trophic level, and residence of marine mammals in the Gulf of California assessed by stable isotope analysis. Mar. Ecol. Prog. Ser. 488, 275–290.CrossRefGoogle Scholar
  5. Balech, E., Ehrlich, M.D., 2008. Esquema Biogeográfico del Mar Argentino. Rev. Invest. Des. Pesq. 19, 45–75.Google Scholar
  6. Barón, P.J., 2001. First description and survey of the egg masses of Loligo gahi D’Orbigny, 1835, and Loligo sanpaulensis Brakoniecki, 1984, from coastal waters of Patagonia. J. Shellfish Res. 20, 289–295.Google Scholar
  7. Barón, P.J., Ré, M.E., 2002. Reproductive cycle and population structure of Loligo sanpaulensis in the northeastern coast of Patagonia. Bull. Mar. Sci. 71, 175–186.Google Scholar
  8. Barros, N.B., Ostrom, P.H., Stricker, C.A., Wells, R.S., 2010. Stable isotopes differentiate bottlenose dolphins off west-central Florida. Mar. Mamm. Sci. 26, 324–336.CrossRefGoogle Scholar
  9. Bearzi, G., Reeves, R.R., Notarbartolo di Sciara, G., Politi, E., Cañadas, A., Frantzis, A., Mussi, B., 2003. Ecology, status and conservation of short-beaked common dolphins Delphinus delphis in the Mediterranean Sea. Mamm. Rev. 33, 224–252.CrossRefGoogle Scholar
  10. Berón-Vera, B., Crespo, E.A., Raga, J.A., Fernández, M., 2007. Parasite communities of common dolphins Delphinus delphis from Patagonia: the relation with host distribution and diet and comparison with sympatric hosts. J. Parasitol. 93, 1056–1060.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bisi, T.L., Dorneles, P.R., Lailson-Brito, J., Lepoint, G., Azevedo, A.d.F., Flach, L., Malm, O., Das, K., 2013. Trophic relationships and habitat preferences of delphinids from the southeastern Brazilian coast determined by carbon and nitrogen stable isotope composition. PLoS One 812, e82205,  https://doi.org/10.1371/journal.pone.0082205.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bond, A.L., Diamond, A.W., 2011. Recent Bayesian stable-isotope mixing models are highly sensitive to variation indiscrimination factors. Ecol. Appl. 21, 1017–1023.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bond, A.L., Hobson, K.A., 2012. Reporting stable-isotope ratios in ecology: recommended terminology, guidelines, and best practices. Waterbirds 35, 324–331.CrossRefGoogle Scholar
  14. Botta, S., Hohn, A.A., Macko, S.A., Secchi, E.R., 2011. Isotopic variation in delphinids from the subtropical western South Atlantic. J. Mar. Biol. Assoc. U. K. 92, 1689–1698.CrossRefGoogle Scholar
  15. Bowen, W.D., 1997. Role of marine mammals in aquatic ecosystems. Mar. Ecol. Prog. Ser. 158, 267–274.CrossRefGoogle Scholar
  16. Browning, N.E., McCulloch, S.D., Bossart, G.D., Worthy, G.A.J., 2014a. Fine-scale population structure of estuarine bottlenose dolphins Tursiops truncatus assessed using stable isotope ratios and fatty acid signature analyses. Mar. Biol.,  https://doi.org/10.1007/s00227-014-2420-z.CrossRefGoogle Scholar
  17. Browning, N.E., Dold, C., I-Fan, J., Worthy, G.A.J., 2014b. Isotope turnover rates and diet-tissue discrimination in skin of ex situ bottlenose dolphins Tursiops truncatus.J. Exp. Biol. 217, 214–221.CrossRefGoogle Scholar
  18. Brunetti, N.E., Ivanovic, M., Rossi, G., Elena, B., Pineda, S., 1998. Fishery biology and life history ofIllex argentinus. In: Okutani, T. (Ed.), Contributed paperto International Symposium on Large Pelagic Squid. Japan Marine Fishery Resources Research Center, Tokyo, Japan, pp. 217–232.Google Scholar
  19. Brunetti, N.E., Ivanovic, M.L., Sakai, M., 1999. Calamares de importancia comercial en la Argentina. In: Biología, distribución, muestreo biológico. INIDEP, Mar del Plata, Argentina, 45p.Google Scholar
  20. Corcuera, J., Monzón, F., Crespo, E.A., Aguilar, A., Raga, J.A., 1994. Interactions between marine mammals and coastal fisheries of Necochea and Claromecó Buenos Aires Province, Argentina. 1994 Gillnets and Cetaceans. In: Perrin, W. F., Donovan G. P., Barlow J. (Eds.) Rep. Int. Whal. Comm., Special Issue 15, 283–290.Google Scholar
  21. Cousseau, M., Perrota, R.G., 2013. Peces marinos de Argentina. In: Biología, distribución, pesca, 4th ed. Publ. Esp. INIDEP, Mar del Plata, Argentina, 193pp.Google Scholar
  22. Crespo, E.A., Dans, S.L., 2008. Bases para el monitoreo y herramientas de gestión para el manejo de las poblaciones de mamíferos marinos afectadas por las actividades turísticas y recreativas en el litoral Patagónico. Tech. Report FMAM/BIRF 28385-AR. Proyecto PNUD ARG 02/018.16 pp.Google Scholar
  23. Crespo, E.A., Koen Alonso, M., Dans, S.L., García, N.A., Pedraza, S.N., Coscarella, M.A., González, R., 2000. Incidental catch of dolphins in mid-water trawls for southern anchovy off Patagonia. J. Cetacean Res. Manag. 2, 11–16.Google Scholar
  24. Cunha, H.A., Loizaga de Castro, R., Secchi, E.R., Crespo, E.A., Lailson-Brito, J., Azevedo, A.F., Lazoski, F., Solé-Cava, A.M., 2015. Molecular and morphological differentiation of common dolphins (Delphinus sp.) in the Southwestern Atlantic: testing the two species hypothesis in sympatry. PLoS One 10, e0140251,  https://doi.org/10.1371/journal.pone.0140251.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Drago, M., Crespo, E.A., Aguilar, A., Cardona, L., García, N., Dans, S.L., Goodall, N., 2009a. Historic diet change of the South American sea lion in Patagonia as revealed by isotopic analysis. Mar. Ecol. Prog. Ser. 384, 273–286.CrossRefGoogle Scholar
  26. Drago, M., Cardona, L., Crespo, E.A., Aguilar, A., 2009b. Ontogenic dietary changes in South American sea lions. J. Zool. 279, 251–261.CrossRefGoogle Scholar
  27. Fernández, R., García-Tiscar, S., Begoña Santos, M., López, A., Martínez-Cedeira, J.A., Newton, J., Pierce, G.J., 2011. Stable isotope analysis in two sympatric populations of bottlenose dolphins Tursiops truncatus: evidence of resource partitioning? Mar. Biol. 158, 1043–1055.Google Scholar
  28. Foote, A.D., Vester, H., Víkingsson, G.A., Newton, J., 2012. Dietary variation within and between populations of northeast Atlantic killer whales, Orcinus orca, inferred from δ13C and 815 N analyses. Mar. Mamm. Sci. 284, E472-E485.CrossRefGoogle Scholar
  29. Francey, R.J., Allison, C.E., Etheridge, D.M., Trudinger, CM., Enting, I.G., Leuenberger, M., Langenfelds, R.L., Michel, E., Steele, LP., 1999. A 1000-year high precision record of 813C in atmospheric CO2. Tellus B 51, 170–193.CrossRefGoogle Scholar
  30. Gómez-Campos, E., Borrell, A., Cardona, L., Forcada, J., Aguilar, A., 2011. Overfishing of small pelagic fishes increases trophic overlap between immature and mature striped dolphins in the Mediterranean Sea. PLoS One 6, e24554.PubMedPubMedCentralCrossRefGoogle Scholar
  31. García-Godos, I., Van Waerebeek, K., Reyes, J.C., Alfaro, J., Arias-Schreiber, M., 2007. Prey occurrence in the stomach contents of four small cetacean species in Peru. LAJAM 6, 171–183.CrossRefGoogle Scholar
  32. Giménez, J., Ramírez, F., Almunia, J., Forero, M.G., de Stephanis, R., 2016. From the pool to the sea: applicable isotope turnover rates and diet to skin discrimination factors for bottlenose dolphins (Tursiops truncatus).J. Exp. Mar. Biol. Ecol. 475, 54–61.CrossRefGoogle Scholar
  33. Hansen, J.E., Buratti, C.C., Garciarena, A.D., 2009. Estado de la población de anchoíta (Engraulis anchoita) al surde 418Sy estimaciónde capturas biológicamente aceptables en el año 2009. INIDEP Technical report 11/09, pp. 1–16.Google Scholar
  34. Heyning, J.E., Perrin, W.F., 1994. Evidence fortwo species of common dolphins genus Delphinus from the eastern North PaciWc. Nat. Hist. Mus. Los Angel. Cty. Contrib. Sci. 442, 1–35.Google Scholar
  35. Hobson, K.A., Wassenaar, L.I., 1999. Stable isotope ecology: an introduction. Oecology 120, 312–313.CrossRefGoogle Scholar
  36. Indermühle, A., Stocker, T.F., Joos, F., Fischer, H., Smith, H.J., Wahlen, M., Deck, B., Mastroianni, D., Tschumi, J., Blunier, T., Meyer, R., Stauffer, B., 1999. Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398, 121–126.CrossRefGoogle Scholar
  37. Jackson, J., Sala, E., 2001. Unnatural oceans. Sci. Mar. 65, 273–281.CrossRefGoogle Scholar
  38. Jefferson, T.A., Webber, M.A., Pitman, R.L., 2008. Marine Mammals of the World: A Comprehensive Guide to Their Identification. Academic Press, Elsevier, San Diego.Google Scholar
  39. Jefferson, T.A., Fertl, D., Bolaños-Jiménez, J., Zerbini, A.N., 2009. Distribution of common dolphins Delphinus spp. in the western Atlantic Ocean: a critical re-examination. Mar. Biol. 156, 1109–1124.Google Scholar
  40. Kaschner, K., Karpouzi, V., Watson, R., Pauly, D., 2006. Forage fish consumption by marine mammals and seabirds. In: Alder, J., Pauly, D. (Eds.), On the Multiple Uses of Forage Fish: From Ecosystem to Markets, vol. 143. FCRR, 33–46.Google Scholar
  41. Kiszka, J., Oremus, M., Richard, P., Poole, M., Ridoux, V., 2010. The use of stable isotope analyses from skin biopsy sampled to assess trophic relationships of sympatric delphinids off Moorea French Polynesia. J. Exp. Mar. Biol. Ecol. 395, 48–54.CrossRefGoogle Scholar
  42. Kiszka, J.J., Méndez_Fernandez, P., Heithaus, M.R., Ridoux, V., 2014. The foraging ecology of coastal bottlenose dolphins based on stable isotope mixing models and behavioural sampling. Mar. Biol. 16, 953–996.CrossRefGoogle Scholar
  43. Lesage, V., Hammill, M.O., Kovacs, K.M., 2001. Marine mammals and the community structure of the Estuary and Gulf of St Lawrence, Canada: evidence from stable isotope analysis. Mar. Ecol. Prog. Ser. 210, 203–221.CrossRefGoogle Scholar
  44. Lesage, V., Morin, Y., Rioux, E., Pomerleau, C., Fergusson, S.H., Pelletier, E., 2010. Stable isotopes and trace elements as indicators of diet and habitat use in cetaceans: predicting errors related to preservation, lipid extraction and lipid normalization. Mar. Ecol. Prog. Ser. 419, 249–265.CrossRefGoogle Scholar
  45. Loizaga de Castro, R., Hoelzel, A.R., Crespo, E.A., 2013. Behavioural responses of Argentine coastal dusky dolphins Lagenorhynchus obscurus to a biopsy pole system. Anim. Welf. 22, 13–23.CrossRefGoogle Scholar
  46. Loizaga de Castro, R., Saporiti, F., Vales, D.V., García, N.A., Cardona, L., Crespo, E.A., 2015. Feeding ecology of dusky dolphins Lagenorhynchus obscurus: evidence from stable isotopes. J. Mamm.,  https://doi.org/10.1093/jmammal/gyv180.CrossRefGoogle Scholar
  47. MacLeod, CD., Bannon, S.M., Pierce, G.J., Schweder, C., Learmonth, J.A., Reid, R.J., Herman, J.S., 2005. Climate change and the cetacean community of northwest Scotland. Biol. Conserv. 124, 477–483.CrossRefGoogle Scholar
  48. Marcoux, M., Whitehead, H., Rendell, L., 2007. Sperm whale feeding variation by location, year, social group and clan: evidence from stable isotopes. Mar. Ecol. Prog. Ser. 333, 309–314.CrossRefGoogle Scholar
  49. Meissner, A., MacLeod, CD., Richard, P., Ridoux, V., Pierce, G., 2011. Feeding ecology of striped dolphins, Stenella coeruleoalba, in the north-western Mediterranean Sea based on stable isotopes. J. Mar. Biol. Assoc. U. K. 96, 1677–1687.Google Scholar
  50. Meynier, L., 63 pp. 2004. Food and feeding ecology of the common dolphin, Delphinus delphis, in the Bay of Biscay: intraspecific dietary variation and food transfer modelling. In: Master Thesis. University of Aberdeen, Aberdeen, United Kingdom.Google Scholar
  51. Meynier, L., Stockin, K.A., Bando, M.K.H., Duignan, P.J., 2008a. Stomach contents of common dolphin Delphinus sp. from New Zealand waters. N. Z.J. Mar. Freshw. Res. 42, 257–268.CrossRefGoogle Scholar
  52. Meynier, L., Pusineri, C., Spitz, J., Begoña Santos, M., Piercem, G.J., Ridoux, V., 2008b. Intraspecific dietary variation in the short-beaked common dolphin Delphinus delphis in the Bay of Biscay: importance of fat fish. Mar. Ecol. Prog. Ser. 354, 277–287.CrossRefGoogle Scholar
  53. Myers, R., Worm, B., 2003. Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Natoli, A., Cañadas, A., Peddemors, V.M., Aguilar, A., Vaquero, C., Fernández-Piqueras, P., Hoelzel, A.R., 2006. Phylogeography and alpha taxonomy of the common dolphin Delphinus sp. J. Evol. Biol. 19, 943–954.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Newsome, S.D., Clementz, M.A., Koch, P.L., 2010. Using stable isotopes biogeochemistry to study marine mammal ecology. Mar. Mamm. Sci. 26, 509–572.Google Scholar
  56. Ohizumi, H., Yoshioka, M., Mori, K., Miyazaki, N., 1998. Stomach contents of common dolphins (Delphinus delphis) in the pelagic western North Pacific. Mar. Mamm. Sci. 14, 835–844.CrossRefGoogle Scholar
  57. Parnell, A.C, Inger, R., Bearhop, S., Jackson, A.L., 2010. Source partitioning using stable isotopes: coping with too much variation. PLoS One, e9672.Google Scholar
  58. Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., Torres Jr., F., 1998. Fishing down marine food webs. Science 279, 860–863.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Perrin, W.F., 2002. Common dolphins Delphinus delphis, D. capensis, and D. tropicalis. In: Perrin, W.F., Würsig, B., Thewissen, J.G.M. (Eds.), Encyclopedia of Marine Mammals. Academic Press, San Diego, pp. 245–248.Google Scholar
  60. Phillips, D.L., Gregg, J.W., 2003. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136, 261–269.CrossRefGoogle Scholar
  61. Pinela, A.M., Borrell, A., Aguilar, A., 2011. Common dolphin morphotypes: niche segregation or taxonomy. J. Zool. 284, 239–247.CrossRefGoogle Scholar
  62. Pinela, A.M., Borrell, A., Aguilar, A., 2015. Variation in δ15N and δ13C stable isotope values in common dolphins (Delphinus spp.) worldwide, with particular emphasis on the eastern North Atlantic populations. Rapid Commun. Mass Spectrom. 29, 855–863.PubMedCrossRefGoogle Scholar
  63. Pusineri, C., Magnin, V., Meynier, L., Spitz, J., Hassani, S., Ridoux, V., 2007. Food and feeding ecology of the common dolphin Delphinus delphis in the oceanic Northeast Atlantic and comparison with its diet in neritic areas. Mar. Mamm. Sci. 23, 30–47.CrossRefGoogle Scholar
  64. Renzi, M., Irusta, G., 2006. Evaluación del estado del efectivo norte de 41ES de la merluza Merluccius hubbsi y estimación de la captura biológicamente aceptable correspondiente al año 2006. Tech. Report INIDEP NE39/06, 33 pp.Google Scholar
  65. Riccialdelli, L., Newsome, S.D., Fogel, M.L., Goodall, R.N.P., 2010. Isotopic assessment of prey and habitat preferences of a cetacean community in the southwestern South Atlantic Ocean. Mar. Ecol. Prog. Ser. 418, 235–248.CrossRefGoogle Scholar
  66. Riccialdelli, L., Newsome, S.D., Goodall, R.N.P., Fogel, M.L., Bastida, R., 2012. Insight into niche separation of Risso’s dolphin Grampus griseus in the southwestern South Atlantic via d13C and d15N values. Mar. Mamm. Sci. 28, 503–515.CrossRefGoogle Scholar
  67. Riccialdelli, L., Newsome, S.D., Dellabianca, N.A., Bastida, R., Fogel, M.L., Goodall, R.N.P., 2013. Ontogenetic diet shift in Commerson’s dolphin Cephalorhynchus commersonii commersonii off Tierra del Fuego. Polar Biol. 36, 617–627.CrossRefGoogle Scholar
  68. Rodriguez, K.A., Macchi, G.G., 2010. Spawning and reproductive potential of the Northern stock of Argentine hake (Merluccius hubbsi). Fish. Res. 106, 560–566.CrossRefGoogle Scholar
  69. Romero, M.A., Dans, S.L., García, N.A., Svendsen, G.M., Gonzále, R., Crespo, E.A., 2012. Feeding habits of two sympatric dolphin species off North Patagonia, Argentina. Mar. Mamm. Sci. 22, 364–377.CrossRefGoogle Scholar
  70. Saporiti, F., Bearhop, S., Vales, D.G., Silva, L., Zenteno, L., Tavares, M., Crespo, E.A., Cardona, L., 2016. Resource partitioning between marine air-breathing predators: are body size and mouth diameter the major determinants? Mar. Ecol. (in press).Google Scholar
  71. Sekiguchi, K., Klages, N.T.W., Best, P.B., 1992. Comparative analysis of the diets of smaller odontocete cetaceans along the coast of Southern Africa. In: Payne, A.I.H., Brink, K.H., Mann, K.H., Hilborn, R. (Eds.). Benguela Trophic Functioning. S. Afr. J. Mar. Sci. 12, 843–861.Google Scholar
  72. Silva, L., Saporiti, F., Vales, D., Tavares, M., Gandini, P., Crespo, E.A., Cardona, L., 2014. Differences in diet composition and foraging patterns between sexes of the Magellanic penguin Spheniscus magellanicus during the non-breeding period as revealed by δ13C and 815N values in feathers and bone. Mar. Biol. 161, 1195–1206.CrossRefGoogle Scholar
  73. Tavares, M., Moreno, I.B., Siciliano, S., Rodriguez, D., Santos, M.C.D., Lailson-Brito, J., Fabian, M.E., 2010. Biogeography of common dolphins genus Delphinus in the Southwestern Atlantic Ocean. Mamm. Rev. 40, 40–64.CrossRefGoogle Scholar
  74. Walker, J.L., Macko, S.A., 1999. Dietary studies of marine mammals using stable carbon and nitrogen isotopic ratios of teeth. Mar. Mamm. Sci. 15, 314–334.CrossRefGoogle Scholar
  75. Young, D.D., Cockcroft, V.G., 1994. Diet of common dolphins Delphinus delphis off the south-east coast of southern Africa: opportunism or specialization. J. Zool. 234, 41–53.CrossRefGoogle Scholar
  76. Zenteno, L., Crespo, E.A., Vales, D.G., Silva, L., Saporiti, L., Oliveira, L.R., Secchi, E.R., Drago, M., Aguilar, A., Cardona, L., 2015. Dietary consistency of male South American sea lions (Otariaflavescens) in southern Brazil during three decades inferred from stable isotope analysis. Mar. Biol.,  https://doi.org/10.1007/s00227-014-2597-1.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2016

Authors and Affiliations

  • Rocío Loizaga de Castro
    • 1
    Email author
  • Fabiana Saporiti
    • 2
  • Damián G. Vales
    • 1
  • Néstor A. García
    • 1
  • Luis Cardona
    • 2
  • Enrique A. Crespo
    • 1
  1. 1.Marine Mammal LabCentre for the Study of Marine Systems (CESIMAR-CENPAT-CONICET, National Research Council)Puerto Madryn, ChubutArgentina
  2. 2.Department of Animal Biology and IRBio, Faculty of BiologyUniversity of BarcelonaBarcelonaSpain

Personalised recommendations