Advertisement

Mammalian Biology

, Volume 81, Issue 4, pp 415–422 | Cite as

Long-term assessment of roe deer reintroductions in North-East Spain: A case of success

  • Rita T. TorresEmail author
  • João Carvalho
  • Carlos Fonseca
  • Emmanuel Serrano
  • José M. López-MartínEmail author
Original investigation

Abstract

Worldwide species relocations are increasingly becoming an important part of species recovery programmes and ecosystem restoration initiatives. Monitoring reintroduced populations after release, in addition to understanding which factors affect translocations, is fundamental to understand the reintroduction process and to maximize the success of future interventions. By using boosted regression trees we evaluated the contribution of roe deer Capreolus capreolus reintroductions (1971–2008) to the current distribution of this species in Catalonia (Spain), and a partial least square regression approach was used to evaluate the influence of some variables as key for the roe deer reintroduction success. Our results show that roe deer currently occupies 85% of Catalonia territory, which represents an almost six-fold increase since the beginning of the 90s. Proximity to the nearest reintroduction nuclei was identified as one of the main drivers positively associated to the current distribution of roe deer in Catalonia, whereas the number of years after the first reintroductions and the number of animals released were important to the success of the reintroductions. We recommend the reintroduction of roe deer to release sites that contain large and suitable patches of habitat and that are sufficiently close to allow population continuity.

Keywords

Boosted regression trees Capreolus capreolus Habitat suitability Restoration ecology Species reintroduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbas, F., Picot, D., Merlet, J., Cargnelutti, B., Lourtet, B., Angibault, J.M., Daufresne, T., Aulagnier, S., Verheyden, H., 2013. Atypical browser the roe deer, may consume substantial quantities of grasses in open landscapes, Eur. J. Wildl. Res. 59, 69–75.CrossRefGoogle Scholar
  2. Apollonio, M., Andersen, R., Putman, R., 2010. European Ungulates and Their Management in the 21 st Century. Cambridge University Press, Cambridge.Google Scholar
  3. Armstrong, D.P., Seddon, P.J., 2008. Directions in reintroduction biology, Trends Ecol. Evol. 23, 20–25.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Barbet-Massin, M., Jiguet, F., Albert, C.H., Thuiller, W., 2012. Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol, Evol. 3, 327–338.Google Scholar
  5. Braza, F., San José, C, López, M., 2004. El corzo en los Alcornocales. Mapa de calidad de habitats. Consejería de Obras Públicas y Transporte Junta de Andalucía, Sevilla.Google Scholar
  6. Calenge, C., Maillard, D., Invernia, N., Gaudin, J.C., 2005. Reintroduction of roe deer Capreolus capreolus into a Mediterranean habitat: female mortality and dispersion, Wildlife Biol. 11, 153–161.CrossRefGoogle Scholar
  7. Carrascal, L.M., Galván, I., Gordo, O., 2009. Partial least squares regression as an alternative to current regression methods used in ecology, Oikos 118, 681–690.CrossRefGoogle Scholar
  8. Carvalho, P., Nogueira, A.J., Soares, A.M., Fonseca, C, 2008. Ranging behaviour of translocated roe deer in a Mediterranean habitat: seasonal and altitudinal influences on home range size and patterns of range use, Mammalia 72 (2), 89–94.CrossRefGoogle Scholar
  9. Caughley, G., Sinclair, A.R.E., 1994. Wildlife Ecology and Management. Blackwell Science, Cambridge.Google Scholar
  10. Cruz, T., Fonseca, C., Carvalho, J., Oliveira, B., Torres, R., 2014. Roe deer reintroduction in central Portugal: a tool for Iberian wolf conservation, Galemys Spanish J. Mammal. 26, 1–10.Google Scholar
  11. Elith, J., Leathwick, J.R., Hastie, T., 2008. A working guide to boosted regression trees, J. Anim. Ecol. 77, 802–813.PubMedCrossRefGoogle Scholar
  12. Fischer, J., Lindenmayer, D.B., 2000. An assessment of the published results of animal relocations, Biol. Conserv. 96, 1–11.CrossRefGoogle Scholar
  13. Foose, T.J., 1991. Viable population strategies for reintroduction programmes. In: Beyond Captive Breeding: Re-Introducing Endangered Mammals to the Wild. Symposium of the Zoological Society of London, pp. 165–172.Google Scholar
  14. Griffith, B., Scott, J., Carpenter, J., Reed, C., 1989. Translocation as a species conservation tool: status and strategy, Science 245, 477–480.PubMedCrossRefGoogle Scholar
  15. Hardman, B., Moro, D., 2006. Optimising reintroduction success by delayed dispersal: is the release protocol important for hare-wallabies? Biol, Conserv. 128, 403–411.CrossRefGoogle Scholar
  16. Hewison, a.J.M., Morellet, N., Verheyden, H., Daufresne, T., Angibault, J.M., Cargnelutti, B., Merlet, J., Picot, D., Rames, J.L., Joachim, J., Lourtet, B., Serrano, E., Bideau, E., Cebe, N., 2009. Landscape fragmentation influences winter body mass of roe deer, Ecography 32, 1062–1070.CrossRefGoogle Scholar
  17. Houde, A.L.S., Garner, S.R., Neff, B.D., 2015. Restoring species through reintroductions: strategies for source population selection, Restor. Ecol. 23 (6), 746–753.CrossRefGoogle Scholar
  18. IUCN/SSC, 2013. Guidelines for Reintroductions and Other Conservation Translocations. Gland, Switzerland.Google Scholar
  19. Komers, P.E., Curman, G.P., 2000. The effect of demographic characteristics on the success of ungulate reintroductions, Biol. Conserv. 93, 187–193.CrossRefGoogle Scholar
  20. López-Martín, J., Martínez-Martínez, D., Such, A., 2009. Supervivencia, dispersión y selección de recursos de corzos Capreolus capreolus (Linnaeus, 1758) reintroducidos en un hábitat mediterráneo, Galemys Spanish J. Mammal. 21, 143–164.Google Scholar
  21. Lawrence, B.A., Kaye, T.N., 2011. Reintroduction of Castilleja levisecta effects of ecological similarity, source population genetics, and habitat quality, Restor. Ecol. 19, 166–176.CrossRefGoogle Scholar
  22. Mésochina, P., Bedin, E., Ostrowski, S., 2003. Reintroducing antelopes into arid areas: lessons learnt from the oryx in Saudi Arabia. C. R. Biol. 326 (Suppl), S158–S165.Google Scholar
  23. Michallet, J., Toïgo, C., 2000. Home ranges of chamois (Rupicapra rupicapra cartusiana) translocated to reinforce a population in the Grande Chartreuse mountain massif, Isère, Game Wildl. Sci. 17, 259–272.Google Scholar
  24. Minckley, W.L., 1995. Translocation as a tool for conserving imperiled fishes: experiences in western United States, Biol. Conserv. 72, 297–309.CrossRefGoogle Scholar
  25. Palomo, L.J., Gisbert, J., 2002. Atlas De Los Mamíferos Terrestres De España. Madrid: Dirección General de Conservación de la Naturaleza-SECEM-SECEMU, Madrid.Google Scholar
  26. Palomo, L.J., Gisbert, J., Blanco, J.C., 2007. Atlas y Libro Rojode los Mamiı´feros Terrestres de Espan˜a. Direccio´ın General para la Biodiversidad-SECEM-SECEMU, Madrid.Google Scholar
  27. Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J., Ferrier, S., 2009. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data, Ecol. Appl. 19, 181–197.PubMedCrossRefPubMedCentralGoogle Scholar
  28. R Development Core Team, 2016. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria https://doi.org/www.R-project.orgGoogle Scholar
  29. Ridgeway, G. (2013)., 2013. Package’GBM’: Generalized Boosted Regression Models.Google Scholar
  30. Rosell, C, Carretero, M.A., 1998. La reintroducció del cabirol a la Zona Volcànica de la Garrotxa, Vitrina 10, 41–48.Google Scholar
  31. Royo, L.J., Pajares, G., Alvarez, I., Fernández, I., Goyache, F., 2007. Genetic variability and differentiation in Spanish roe deer (Capreolus capreolus): a phylogeographic reassessment within the European framework, Mol. Phylogenet. Evol. 42 (1), 47–61.PubMedCrossRefGoogle Scholar
  32. Sanchéz, G., Trinchera, L, Russolillo, G., 2015. plspm: Tools for Partial Least Squares Path Modeling (PLSPM). R package version 0.4.7.Google Scholar
  33. Sarrazin, F., Barbault, R., 1996. Reintroduction: challenges and lessons for basic ecology, Trends Ecol. Evol. 11, 474–478.PubMedCrossRefGoogle Scholar
  34. Seddon, P.J., 2010. From reintroduction to assisted colonization: moving along the conservation translocation spectrum, Restor. Ecol. 18, 796–802.CrossRefGoogle Scholar
  35. Seddon, P.J., Griffiths, C.J., Soorae, P.S., Armstrong, D.P., 2014. Reversing defaunation: restoring species in a changing world, Science 345, 406–412.PubMedCrossRefGoogle Scholar
  36. Serrano, E., Verheyden, H., Hummel, J., Cargnelutti, B., Lourtet, B., Merlet, J., González-Candela, M., Angibault, J.M., Hewison, A.J.M., Clauss, M., 2012. Digestive plasticity as a response to woodland fragmentation in roe deer, Ecol. Res. 27, 77–82.CrossRefGoogle Scholar
  37. Stamps, J.A., Swaisgood, R.R., 2007. Someplace like home: experience, habitat selection and conservation biology, Appl. Anim. Behav. Sci. 102, 392–409.CrossRefGoogle Scholar
  38. Torres, R.T., Santos, J., Linnell, J.D.C, Virgós, E., Fonseca, C, 2011. Factors affecting roe deer occurrence in a Mediterranean landscape, Northeastern Portugal, Mamm. Biol. 76, 491–497.CrossRefGoogle Scholar
  39. Torres, R.T., Virgós, E., Panzacchi, M., Linnell, J.D.C., Fonseca, C, 2012a. Life at the edge: Roe deer occurrence at the opposite ends of their geographical distribution, Norway and Portugal. Mamm. Biol. 77, 140–146.CrossRefGoogle Scholar
  40. Torres, R.T., Virgós, E., Santos, J., Linnell, J.D.C., Fonseca, C., 2012b. Habitat use by sympatric red and roe deer in a Mediterranean ecosystem. Anim. Biol. 62, 351–366.CrossRefGoogle Scholar
  41. Torres, R., Miranda, J., Carvalho, J., Fonseca, C, 2015. Expansion and current status of roe deer (Capreolus capreolus) at the edge of its distribution in Portugal. Ann. Zool. Fennici, 52.CrossRefGoogle Scholar
  42. Valente, A.M., Fonseca, C., Marques, T., a Santos, J.P., Rodrigues, R., Torres, R.T., 2014. Living on the edge: Roe Deer (Capreolus capreolus) density in the margins of its geographical range. PLoS One 9, e88459.Google Scholar
  43. Villamuelas, M., Fernández, N., Albanell, E., Gálvez-Cerón, A., Bartolomé, J., Mentaberre, G., López-Olvera, J.R., Fernández-Aguilar, X., Colom-Cadena, A., López-Martín, J.M., Pérez-Barbería, J., Garel, M., Marco, I., Serrano, E., 2016. The enhanced vegetation index (EVI) as a proxy for diet quality and composition in a mountain ungulate, Ecol. Indic. 61, 658–666.CrossRefGoogle Scholar
  44. Virgoís, E., Tellería, J., 1998. Roe deer habitat selection in Spain: constraints on the distribution of a species, Can. J. Zool. 76, 1294–1299.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2016

Authors and Affiliations

  • Rita T. Torres
    • 1
    Email author
  • João Carvalho
    • 1
    • 2
  • Carlos Fonseca
    • 1
  • Emmanuel Serrano
    • 1
    • 2
  • José M. López-Martín
    • 2
    • 3
    Email author
  1. 1.Department of Biology & CESAMUniversity of AveiroAveiroPortugal
  2. 2.Servei d’Ecopatologia de Fauna SalvatgeDepartament de Medicina i Cirurgia Animals, Universitat Autònoma de BarcelonaBarcelonaSpain
  3. 3.Sección de Biodiversidad y Actividades CinegéticasServicios Territoriales de Barcelona, Depto. de Agricultura, Ganadería, Pesca y AlimentaciónBarcelonaSpain

Personalised recommendations