Advertisement

Mammalian Biology

, Volume 81, Issue 4, pp 410–414 | Cite as

Individual vs. non-individual acoustic signalling in African woodland dormice (Graphiurus murinus)

  • Leonardo Ancillotto
  • Danilo RussoEmail author
Original investigation

Abstract

Animals that live in cohesive groups often use social calls for long-distance communication, particularly in low-visibility habitats, whereas other call types are only used to communicate over short distances. According to the “distance-communication hypothesis” only the former should encode individual information while the latter should not because individuals are in visual or olfactory contact when calls are broadcast. We used the African woodland dormouse Graphiurus murinus, a social rodent whose vocal repertoire is still poorly known, as a model species to test the hypothesis that long-range but not shortrange calls will structurally differ across individuals. By conducting controlled video- and audio recordings in captivity, we associated calls to non-vocal behaviours in G. murinus and selected two call types (contact and aggressive calls) that clearly served long- and short-range communication respectively. In agreement with the distance-communication hypothesis, only contact but not aggressive calls differed significantly among subjects. Although we did not test the actual function of such variation, the latter provides a structural basis for the transmission of individual information. This is the first time this hypothesis is tested in a small non-volant mammal. Our study also provides the first description of acoustic behaviour in G. murinus.

Keywords

Communication Dormouse Individual discrimination Rodent Vocal signature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ancillotto, L., Russo, D., 2014. Selective aggressiveness in European free-tailed bats (Tadarida teniotis): influence of familiarity, age and sex, Naturwissenschaften 101, 221–228.PubMedCrossRefGoogle Scholar
  2. Ancillotto, L, Sozio, G., Mortelliti, A., Russo, D., 2014. Ultrasonic communication in Gliridae (Rodentia): the hazel dormouse (Muscardinus avellanarius) as a case study, Bioacoustics 23, 129–141,  https://doi.org/10.1080/09524622.2013. 838146.CrossRefGoogle Scholar
  3. Ancillotto, L, Mori, E., Sozio, G., Solano, E., Bertolino, S., Russo, D., 2016. A novel approach to field identification of cryptic Apodemus wood mice: calls differ more than morphology. Mammal Rev.,  https://doi.org/10.1111/mam.12076.Google Scholar
  4. Arriaga, G., Jarvis, E.D., 2013. Mouse vocal communication system: are ultrasounds learned or innate? Brain Lang. 124, 96–116,  https://doi.org/10.1016/j.bandl. 2012.10.002.Google Scholar
  5. Boratynski, P., Rachwald, A., Nowakowski, W., 1999. Ultrasound communication calls in forest dormouse (Dryomys nitedula). In: IVth Int. Conf. Dormice, Rodentia, Gliridae.Google Scholar
  6. Bouchet, H., Blois-Heulin, C., Pellier, A.S., Zuberbühler, K., Lemasson, A., 2012. Acoustic variability and individual distinctiveness in the vocal repertoire of red-capped mangabeys (Cercocebus torquatus), J. Comp. Psychol. 126, 45–56.PubMedCrossRefGoogle Scholar
  7. Bouchet, H., Blois-Heulin, C., Lemasson, A., 2013. Social complexity parallels vocal complexity: a comparison of three non-human primate species. Front. Psychol. 4.Google Scholar
  8. Boughman, J., Wilkinson, G., 1998. Greater spear-nosed bats discriminate group mates by vocalizations. Anim. Behav. 55, 1717–1732,  https://doi.org/10.1006/anbe.1997.0721.CrossRefGoogle Scholar
  9. Cornec, C, Hingrat, Y., Rybak, F., 2014. Individual signature in a lekking species: visual and acoustic courtship parameters may help discriminating conspecifics in the houbara bustard, Ethology 120, 726–737.CrossRefGoogle Scholar
  10. Ellis, J.M., 2008. Decay of apparent individual distinctiveness in the begging calls of adult female white-throated magpie-jays, Condor 110, 648–657.CrossRefGoogle Scholar
  11. Freeberg, T.M., Dunbar, R.I., Ord, T.J., 2012. Social complexity as a proximate and ultimate factor in communicative complexity, Philos. Trans. Soc. Lond. B Biol. Sci. 367, 1785–1801.CrossRefGoogle Scholar
  12. Hare, J.F., 1998. Juvenile Richardson’s ground squirrels, Spermophilus richardsonii, discriminate among individual alarm callers, Anim. Behav. 55, 451–460.PubMedCrossRefGoogle Scholar
  13. Hogstedt, G., 1983. Adaptation unto death: function of fear screams. Am. Nat., 562–570.Google Scholar
  14. Holy, T.E., Guo, Z., 2005. Ultrasonic songs of male mice. PLoS Biol. 3, e386,  https://doi.org/10.1371/journal.pbio.0030386.CrossRefGoogle Scholar
  15. Hutson, C.L., Lee, K.N., Abel, J., Carroll, D.S., Montgomery, J.M., Olson, V.A., Li, Y., Davidson, W., Hughes, C, Dillon, M., Spurlock, P., et al., 2007. Monkeypox zoonotic associations: insights from laboratory evaluation of animals associated with the multistate US outbreak, Am. J. Trop. Med. Hyg. 76, 757–767.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Hutterer, R., Peter, G., 2001. The vocal repertoIre of Graphiurus parvus, and comparisons with other species of dormice, Trak. Univ. J. Sci. Res. Ser. B 2, 69–74.Google Scholar
  17. Janik, V.M., Sayigh, L.S., 2013. Communication in bottlenose dolphins: 50 years of signature whistle research, J. Comp. Physiol. 199, 479–489.CrossRefGoogle Scholar
  18. Juskaitis, R., 2008. The Common Dormouse Muscardinus avellanarius: Ecology, Population Structure and Dynamics. Institute of Ecology of Vilnius University Publishers, Vilnius.Google Scholar
  19. Jurczyszyn, M., 1994. Population density of Myoxus glis (L.) in some forest biotops, Hystrix Ital. J. Mammal. 6, 265–271.Google Scholar
  20. Kalcounis-Rueppell, M.C., Petric, R., Briggs, J.R., Carney, C, Marshall, M.M., Willse, J.T., Rueppell, O., Ribble, D.O., Crossland, J.P., 2010. Differences in ultrasonic vocalizations between wild and laboratory California mice (Peromyscus californicus). PLoS One 5, e9705,  https://doi.org/10.1371/journal.pone 0009705.CrossRefGoogle Scholar
  21. Kastenmayer, R.J., Moak, H.B., Jeffress, E.J., Elkins, W.R., 2010. Management and care of African dormice (Graphiurus kelleni), J. Am. Assoc. Lab. Anim. Sci. 49, 173–176.PubMedPubMedCentralGoogle Scholar
  22. Kremers, D., Lemasson, A., Almunia, J., Wanker, R., 2012. Vocal sharing and individual acoustic distinctiveness within a group of captive orcas (Orcinus orca). J. Comp. Psychol. 126, 433.CrossRefGoogle Scholar
  23. Krystufek, B., Haberl, W., Baxter, R.M., Zima, J., 2004. Morphology and karyology of two populations of the woodland dormouse Graphiurus murinus in the Eastern Cape, South Africa, Folia Zool. 53, 339–350.Google Scholar
  24. Macedonia, J.M., 1986. Individuality in a contact call of the ringtailed lemur (Lemur catta), Am. J. Primatol. 11, 163–179.CrossRefGoogle Scholar
  25. Madikiza, Z.J.K., 2010. Population biology and aspects of the socio-spatial organisation of the Woodland dormouse Graphiurus murinus (Desmaret, 1822) in the Great fish river Reserve, South Africa. In: Ph.D Thesis. University of Fort Hare, South Africa.Google Scholar
  26. Madikiza, Z.J.K., Bertolino, S., Baxter, R.M., Do Linh San, E., 2010. Nest box use by woodland dormice (Graphiurus murinus): the influence of life cycle and nest box placement. Eur. J. Wildl. Res. 56, 735–743,  https://doi.org/10.1007/ s10344-010-0369-x.Google Scholar
  27. Madikiza, Z.J.K., Bertolino, S., Do Linh San, E., 2011. Female in space, or female in space and time? First data on the socio-spatial organization and mating system of the woodland dormouse (Graphiurus murinus). J. Ethol. 29, 375–380,  https://doi.org/10.1007/s10164-010-0249-6.CrossRefGoogle Scholar
  28. Matrosova, V.A., Blumstein, D.T., Volodin, I.A., Volodina, E.V., 2011. The potential to encode sex, age, and individual identity in the alarm calls of three species of Marmotinae, Naturwissenschaften 98, 181–192.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Maynard Smith, J., Harper, D., 2003. Animal Signals. Oxford University Press, Oxford, UK, pp. 208.Google Scholar
  30. McCowan, B., Hooper, S.L., 2002. Individual acoustic variation in Belding’s ground squirrel alarm chirps in the High Sierra Nevada, J. Acoust. Soc. Am. 111, 1157–1160.PubMedCrossRefGoogle Scholar
  31. Miller, J.R., Engstrom, M.D., 2010. Stereotypic vocalizations in harvest mice (Reithrodontomys): harmonic structure contains prominent and distinctive audible, ultrasonic, and non-linear elements. J. Acoust. Soc. Am. 128, 1501–1510,  https://doi.org/10.1121/1.3455855.Google Scholar
  32. Mitani,J.C, Gros-Louis, J., Macedonia, J.M., 1996. Selection for acoustic individuality within the vocal repertoire of wild chimpanzees, Int. J. Primatol. 17, 569–583.CrossRefGoogle Scholar
  33. Montgelard, C, Matthee, C.A., Robinson, T.J., 2003. Molecular systematics of dormice (Rodentia: Gliridae) and the radiation of Graphiurus in Africa. Proc. R. Soc. B. Biol. Sci. 270, 1947–1955,  https://doi.org/10.1098/rspb.2003.2458.Google Scholar
  34. Mumm, C.A.S., Urrutia, M.C., Knörnschild, M., 2014. Vocal individuality in cohesion calls of giant otters, Pteronura brasiliensis, Anim. Behav. 88, 243–252,  https://doi.org/10.1016/j.anbehav.2013.12.005.CrossRefGoogle Scholar
  35. Nousek, A.E., Slater, P.J., Wang, C, Miller, P.J., 2006. The influence of social affiliation on individual vocal signatures of northern resident killer whales (Orcinus orca), Biol. Lett. 2, 481–484.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Pfalzer, G., Kusch, J., 2003. Structure and variability of bat social calls: implications for specificity and individual recognition, J. Zool. 261, 21–33,  https://doi.org/10.1017/S0952836903003935.CrossRefGoogle Scholar
  37. Pollard, K.A., Blumstein, D.T., 2012. Evolving communicative complexity: insights from rodents and beyond. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 1869–1878,  https://doi.org/10.1098/rstb.2011.0221.Google Scholar
  38. Searby, A., Jouventin, P., Aubin, T., 2004. Acoustic recognition in macaroni penguins: an original signature system, Anim. Behav. 67, 615–625.CrossRefGoogle Scholar
  39. Sousa-Lima, R.S., Paglia, A.P., Da Fonseca, G.A., 2002. Signature information and individual recognition in the isolation calls of Amazonian manatees, Trichechus inunguis (Mammalia: Sirenia), Anim. Behav. 63, 301–310.CrossRefGoogle Scholar
  40. Suckow, M.A., Stevens, K.A., Wilson, R.P., 2012. The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents. Academic Press/Elsevier, Waltham, MA.Google Scholar
  41. Terryn, L, Wendelen, W., Leirs, H., Lenglet, G., Verheyen, E., 2007. African Rodentia. https://doi.org/projects.biodiversity.be/africanrodentia.
  42. Tyack, P.L., 2000. Dolphins whistle a signature tune. Science 289, 1310.Google Scholar
  43. Wanker, R., Fischer, J., 2001. Intra-and interindividual variation in the contact calls of spectacled parrotlets (Forpus conspicillatus), Behaviour 138, 709–726.CrossRefGoogle Scholar
  44. Webb, P.I., Skinner, J.D., 1994. The dormice (Myoxidae) of Southern Africa, Hystrix Ital. J. Mammal. 6, 287–293.Google Scholar
  45. Wiley, R.H., Richards, D.G., 1978. Physical constraints on acoustic communication in the atmosphere: implications for the evolution of animal vocalizations, Behav. Ecol. Sociobiol. 3, 69–94.CrossRefGoogle Scholar
  46. Wright, S.L., Brown, R.E., 2004. Sex differences in ultrasonic vocalizations and coordinated movement in the California mouse (Peromyscus californicus), Behav. Processes 65, 155–162,  https://doi.org/10.1016/j.beproc.2003.09.004.PubMedCrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2016

Authors and Affiliations

  1. 1.Wildlife Research Unit, Laboratorio di Ecologia Applicata, Dipartimento di AgrariaUniversità degli Studi di Napoli Federico IIPorticiItaly
  2. 2.School of Biological SciencesUniversity of Bristol, Life Sciences BuildingBristolUK

Personalised recommendations