Mammalian Biology

, Volume 81, Issue 2, pp 194–200 | Cite as

Effects of agro-forestry activities, cattle-raising practices and food-related factors in badger sett location and use in Portugal

  • Dário Hipólito
  • Margarida Santos-Reis
  • Luís M. RosalinoEmail author
Original Investigation


Mediterranean landscapes in Europe are characterized by a mixed matrix of agriculture, agro-forestry or cattle-farming areas, which have influenced native communities for centuries. Recently, new changes were imposed on these agro-forestry landscapes due to novel management options that provide new challenges for wildlife. From a conservation perspective, there is an urgent need to assess what are the impacts and ecological responses of local wildlife populations to those changes. In the present study, we assessed the influence of human-caused disturbances (e.g. agroforestry practices, cattle-breeding activities and game management), together with food/water and landscape-related factors, on sett site selection by European badgers. We also tested the role of these factors, together with climatic variability, on sett use. We detected that areas further away from water sources, but close to game species feeding structures, have a higher probability of hosting a European badger sett. Moreover, sett use was promoted by low disturbance: setts with lower cattle presence and without understory removal activities were more often in use. Thus, our study shows that, in our study area, agro-forestry and cattle breeding activities constrain badger sett use, while food and water availability influence their distribution. Although badgers have been adapting to anthropogenic activities for centuries, they respond differently depending on the type and intensity of management. Thus, to ensure biodiversity persistence and sustainable human exploitation of the landscape, we need to identify trade-offs between wildlife ecological adaptations and anthropogenic agriculture, forestry and cattle production.


Meles meles Multi-use forests Sett selection Forest management Southwestern Europe 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barton, K., 2014. MuMIn: Multi-model Inference. R Package Version 1.10.5.
  2. Bates, D., Maechler, M., Bolker, B., Walker, S., 2014. lme4: Linear Mixed-effects Models Using Eigen and S4. R Package Version 1. 1–7.
  3. Bivand, R., Piras, P., 2015. Comparing implementations of estimation methods for spatial econometrics, J. Stat. Softw. 63 (18), 1–36.CrossRefGoogle Scholar
  4. Bugalho, M.N., Caldeira, M.C, Pereira, J.S., Aronson, J., Pausas, J.G., 2011. Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services, Front. Ecol. Environ. 9, 278–286.CrossRefGoogle Scholar
  5. Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach. Springer-Verlag, New York.Google Scholar
  6. Butler, J., Roper, T.J., 1996. Ectoparasites and sett use in European badgers, Anim. Behav. 52, 621–629.CrossRefGoogle Scholar
  7. Cabezas-Díaz, S., Lozano, J., Virgós, E., 2009. The declines of the wild rabbit (Oryc-tolagus cuniculus) and the Iberian lynx (Lynx pardinus) in Spain: redirecting conservation efforts. In: Aronoff, J.B. (Ed.), Handbook of Nature Conservation. Nova Science Publishers, Inc., New York, pp. 283–310.Google Scholar
  8. Casanova, P., Memoli, A., 2001. Hunting in Spain, Ital. J. For. Mount. Environ. 56 (1), 56–67.Google Scholar
  9. Clark, P.J., Evans, F.C., 1954. Distance to nearest neighbour as a measure of spatial relationships in populations, Ecology 35 (4), 445–453.CrossRefGoogle Scholar
  10. Correia, A.M., 2001. Seasonal and interspecific evaluation of predation by mammals and birds on the introduced red swamp crayfish Procambarus clarkii (Crustacea, Cambaridae) in a freshwater marsh (Portugal), J. Zool. Lond. 255, 533–541.CrossRefGoogle Scholar
  11. de Leeuw, J., Mair, P., 2009. Gifi methods for optimal scaling in R: the package homals, J. Stat. Softw. 31 (4), 1–20.CrossRefGoogle Scholar
  12. Diniz, J.A.F., Bini, L.M., Hawkins, B.A., 2003. Spatial autocorrelation and red herrings in geographical ecology, Global Ecol. Biogeogr. 12, 53–64.CrossRefGoogle Scholar
  13. Dormann, C.F., McPherson, J.M., Araújo, M.B., Bivand, R., Bolliger, J., Carl, G., Davies, R.G., Hirzel, A., Jetz, W., Kissling, W.D., Kühn, I., Ohlemüller, R., Peres-Neto, P.R., Reineking, B., Schröder, B., Schurr, F.M., Wilson, R., 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography30, 609–628.CrossRefGoogle Scholar
  14. Goncalves, P., Alcobia, S., Simões, L, Santos-Reis, M., 2012. Effects of management options on mammal richness in a Mediterranean agro-silvo-pastoral system, Agroforest. Syst. 85, 383–395.CrossRefGoogle Scholar
  15. Good, T.C., Hindenlang, K., Imfeld, S., Nievergelt, B., 2001. A habitat analysis of badger (Meles meles L.) setts in a semi-natural forest, Mamm. Biol. 66, 204–214.Google Scholar
  16. Hammond, R.F., McGrath, G., Martin, S.W., 2001. Irish soil and land-use classifications as predictors of numbers of badgers and badger setts, Prev. Vet. Med. 51, 137–148.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Hanley, J.A., McNeil, B., 1982. The meaning and use of the area under a Receiver Operating Characteristic (ROC) curve, Radiology 143, 29–36.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Herrera, CM., 1989. Frugivory and seed dispersal by carnivorous mammals, and associated fruit characteristics, in undisturbed Mediterranean habitats, Oikos 55, 250–262.CrossRefGoogle Scholar
  19. Jaksic, F.M., Delibes, M., 1987. A comparative analysis of food-niche relationships and trophic guild structure in two assemblages of vertebrate predators differing in species richness: causes, correlations, and consequences, Oecologia 71, 461–472.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Jenkinson, S., Wheater, C.P., 1998. The influence of public access and sett visibility on badgers (Meles meles) sett disturbance and persistence, J. Zool. Lond. 246, 478–482.CrossRefGoogle Scholar
  21. Jepsen, J.U., Madsen, A.B., Karlsson, M., Groth, D., 2005. Predicting distribution and density of European badger (Meles meles) setts in Denmark, Biodivers. Conserv. 14, 3235–3253.CrossRefGoogle Scholar
  22. Kowalczyk, R., Zalewski, A., Jedrzejewska, B., Jedrzejewski, W., 2003. Spatial organization and demography of badgers (Meles meles) in Bialowieza Primeval Forest, Poland, and the influence of earthworms on badger densities in Europe, Can. J. Zool. 81, 74–87.CrossRefGoogle Scholar
  23. Kruuk, H., 1989. The Social Badger. Oxford University Press, Oxford.Google Scholar
  24. Linting, M., Meulman, J.J., Groenen, P.J.F., Van der Kooij, A.J., 2007. Nonlinear principal components analysis: introduction and application, Psychol. Meth. 12 (3), 336–358.CrossRefGoogle Scholar
  25. Loureiro, F., Rosalino, L.M., Macdonald, D.W., Santos-Reis, M., 2007. Use of multiple den sites by Eurasian badgers, Meles meles, in a Mediterranean habitat, Zoolog. Sci. 24, 978–985.PubMedCrossRefGoogle Scholar
  26. Muñoz-Igualada,J., Shivik,J.A., Domínguez, F.G., Lara, J., González, L.M., 2008. Evaluation of cage-traps and cable restraint devices to capture red foxes in Spain, J. Wildl. Manage. 72, 830–836.CrossRefGoogle Scholar
  27. Neal, E., Cheeseman, C, 1996. Badgers. T & A Poyser, Lda, London.Google Scholar
  28. Paradis, E., Claude, J., Strimmer, K., 2004. Analyses of phylogenetics and evolution in R language, Bioinformatics 20, 289–290.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Pita, R., Mira, A., Moreira, F., Morgado, R., Beja, P., 2009. Influence of landscape characteristics on carnivore diversity and abundance in Mediterranean farmland, Agric. Ecosyst. Environ. 132, 57–65.CrossRefGoogle Scholar
  30. QGIS Development Team, Scholar
  31. R Core Team, 2014. R: A Language and Environment for Statistical Computin, R Foundation for Statistical Computing, Vienna. Remonti, L., Balestrieri, A., Prigioni, C, 2006. Factors determining badger Meles meles sett location in agricultural ecosystems of NW Italy. Folia Zool. 55, 19–27.Google Scholar
  32. Revilla, E., Palomares, F., 2002. Spatial organization, group living and ecological correlates in low-density populations of Eurasian Badgers, Meles meles, J. Anim. Ecol. 71, 497–512.CrossRefGoogle Scholar
  33. Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C, Müller, M., 2011. pROC: an open-source package for R and S+to analyze and compare ROC curves. BMC Bioinform. 12, 77.Google Scholar
  34. Roper, T.J., 1992. The structure and function of badger setts, J. Zool. Lond. 227, 691–694.CrossRefGoogle Scholar
  35. Roper, T.J., 2010. Badgers. HarperCollins Publishers, London.Google Scholar
  36. Rosalino, L.M., Macdonald, D.W., Santos-Reis, M., 2004. Spatial structure and land-cover use in a low density Mediterranean population of Eurasian badgers, Can. J. Zool. 82, 1493–1502.CrossRefGoogle Scholar
  37. Rosalino, L.M., Loureiro, F., Macdonald, D.W., Santos-Reis, M., 2005a. Dietary shifts of the badger (Melesmeles) in Mediterranean woodlands: an opportunistic forager with seasonal specialisms. Mamm. Biol. 70, 12–23.CrossRefGoogle Scholar
  38. Rosalino, L.M., Macdonald, D.W., Santos-Reis, M., 2005b. Resource dispersion and badger population density in Mediterranean woodlands: is food, water or geology the limiting factor? Oikos 110, 441–452.Google Scholar
  39. Rosalino, L.M., Santos, M.J., Domingos, S., Rodrigues, M., Santos-Reis, M., 2005c. Population structure and body size of sympatric carnivores in a Mediterranean landscape of SW Portugal. Rev. Biol. (Lisboa) 23, 135–146.Google Scholar
  40. Siegel, S., 1957. Nonparametric statistics, Am. Stat. 11, 13–19.Google Scholar
  41. Virgós, E., 2001. Relative value of riparian woodlands in landscapes with different forest cover for medium-sized Iberian carnivores, Biodivers. Conserv. 10, 1039–1049.CrossRefGoogle Scholar
  42. Virgós, E., Casanovas,J.G., 1999. Badger Meles meles sett site selection in low density Mediterranean areas of central Spain, Acta Theriol. 44, 173–182.CrossRefGoogle Scholar
  43. Zar, J.H., 2010. Biostatistical Analysis. Pearson Prentice Hall, Upper Saddle River.Google Scholar
  44. Zuur, A.F., Ieno, E.N., Smith, G.M., 2007. Analysing Ecological Data. Springer, New York.CrossRefGoogle Scholar
  45. Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M., 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2015

Authors and Affiliations

  • Dário Hipólito
    • 1
  • Margarida Santos-Reis
    • 1
  • Luís M. Rosalino
    • 1
    • 2
    Email author
  1. 1.cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
  2. 2.CESAM & Departmento de BiologiaUniversidade de Aveiro, Campus Universitário de SantiagoAveiroPortugal

Personalised recommendations