Mammalian Biology

, Volume 80, Issue 5, pp 414–423 | Cite as

Quantifying the age- and sex-dependent morphological variation in two syntopic mustelids: Martes martes and Martes foina

  • Sandrine RuetteEmail author
  • Jérémy Larroque
  • Michel Albaret
  • Jean-Michel Vandel
  • Sébastien Devillard
Original Investigation


Age determination is a prerequisite to establish reliable age and sex-specific patterns of morphological variation between individuals, populations and species. In this paper, we explored sex and age morphological variations in pine and stone martens in the same region of Bresse (France) during the same period. Using a large dataset of stone martens and pine martens genetically identified, we discriminated individuals using a set of morphological measurements (body mass, head-and-body length, tooth wear, tail length, neck circumference, posterior foot length, baculum length) and evaluated their power in correctly classifying individuals in three age classes: juveniles, subadults and adults. We then derived cross-sectional growth curves for the two species and estimated the age at the end of growth by adjusting sex and species-specific von Bertalanffy growth curves. Our results showed that sub-adults and adults are difficult to disentangle based on morphological measurements, especially because subadults reached adult size by the age of eight months. On the adults, the sexual size dimorphism in favor of males for all traits we measured was clearly more pronounced in pine martens than in stone martens. Stone martens showed significantly larger measurements than pine martens of the same sex, except for head-and-body length which was not significant and posterior foot length which was larger in pine martens. We discussed our results in the light of various hypotheses concerning biogeographical variation and long-term morphological divergence. Our results suggest that inter-specific differences in morphology might facilitate coexistence of both species in the same area.


Martes martes Martes foina Morphology Coexistence Age 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ansorge, H., Suchentrunk, F., 2001. Aging steppe polecats (Mustela eversmanni) and polecats (Mustela putorius) by canine cementum layers and skull characters. Wiss. Mitt. Niederösterr. Landesmus. 14, 79–106.Google Scholar
  2. Beasley, J.C., Rhodes, O.E., 2007. Effect of tooth removal on recaptures of raccoons. J. Wildl. Manage. 71, 266–270.CrossRefGoogle Scholar
  3. Belant, J.L., 2007. Human-caused mortality and population trends of American marten and fisher in a U.S. National Park. Nat. Areas J. 27, 155–160.CrossRefGoogle Scholar
  4. Bonesi, L, Harrington, L.A., Maran, T., Sidorovich, V.E., Macdonald, D.W., 2006. Demography of three populations of American mink Mustela vison in Europe. Mamm. Rev. 36, 98–106.CrossRefGoogle Scholar
  5. Brown, W.L., Wilson, E.O., 1956. Character displacement. Syst. Zool. 5, 49–64.CrossRefGoogle Scholar
  6. Canivenc, R., Mauget, C, Bonnin, M., Aitken, R.J., 1981. Delayed implantation in the Beech marten (Martes foina). J. Zool. 193, 325–332.CrossRefGoogle Scholar
  7. Caughley, G.H., 1980. Analysis of Vertebrate Populations. Wiley, Chichester.Google Scholar
  8. Chessel, D., Dufour, A.B., Thioulouse, J., 2004. The ade4 package-I - One-table methods. R News 4, 5–10.Google Scholar
  9. Clevenger, A.P., 1994. Feeding ecology of the Eurasian pine marten Martesmartes and stone marten Martes foina in Europe. In: Buskirk, S.W., Harestad, A.S., Raphael, M.G., Powell, R.A. (Eds.), Martens, Sables, and Fishers: Biology and Conservation. Cornell Univ. Press, Ithaca, NY, pp. 326–340.Google Scholar
  10. Costello, CM., Inman, K.H., Jones, D.E., Inman, R.M., Thompson, B.C., Quigley, H.B., 2004. Reliability of the cementum annuli technique for estimating age of black bears in New Mexico. Wildl. Soc. B 32, 169–176.CrossRefGoogle Scholar
  11. Davies, T.J., Meiri, S., Barraclough, T.G., Gittleman, J.L., 2007. Species co-existence and character divergence across carnivores. Ecol. Lett. 10, 146–152.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Daylan, T., Simberloff, D., 1994. Character displacement, sexual dimorphism, and morphological variation among British and Irish Mustelids. Ecology 75, 1063–1073.CrossRefGoogle Scholar
  13. Dayan, T., Simberloff, D., Tchernov, E., Yom-Tov, Y., 1989. Inter- and intraspecific character displacement in Mustelids. Ecology 70, 1526–1539.CrossRefGoogle Scholar
  14. DeMarinis, A.M., Pandolfi, M., 1995. Morphometric variation in stone marten Martes foina in western Alps in relation to climate. Hystrix 7, 119–125.Google Scholar
  15. Delibes, M., 1983. Interspecific competition and the habitat of the stone marten Martes foina (Erxleben 1777) in Europe. Acta Zool. Fenn. 174, 229–231.Google Scholar
  16. Erlinge, S., 1979. Adaptative significance of sexual dimorphism in weasels. Oikos 33, 233–245.CrossRefGoogle Scholar
  17. Fryxell, J., Falls, J.B., Falls, E.A., Brooks, R.J., Dix, L, Strickland, M., 2001. Harvest dynamics of mustelid carnivores in Ontario, Canada. Wildl. Biol. 7, 151–159.CrossRefGoogle Scholar
  18. Genovesi, P., Secchi, M., Boitani, L, 1996. Diet of stone martens: an example of ecological flexibility. J. Zool. Lond. 238, 545–555.CrossRefGoogle Scholar
  19. Gerasimov, S., 1985. Species and sex determination of Martes martes and Martes foina by use of systems of craniometrical indices developed by stepwise discriminant analysis. Mammalia 49, 235–248.CrossRefGoogle Scholar
  20. Gove, N.E., Skalski, J.R., Zager, P., Townsend, R.L., 2002. Statistical models for population reconstruction using age-et-harvest data. J. Wildl. Manage. 66, 310–320.CrossRefGoogle Scholar
  21. Grau, G.A., Sanderson, G.C., Rogers, J.P., 1970. Age determination of raccoons. J. Wildl. Manage. 34, 364–371.CrossRefGoogle Scholar
  22. Grue, H., Jensen, B., 1979. Review of the formation of incremental lines in tooth cementum of terrestrial mammals. Dan. Rev. Game Biol. 11, 1–48.Google Scholar
  23. Grupe, G., Krüger, H.H., 1990. Feeding ecology ofthe stone and pine marten revealed by element analysis of their skeletons. Sci. Total Environ. 90, 227–240.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Harris, S., Cresswell, W.J., Cheeseman, C.L., 1992. Age determination of badgers (Meles meles) from tooth wear: the need for a pragmatic approach. Comm. Mamm. Soc. 65, 679–684.Google Scholar
  25. Helldin, J.O., 1997. Age determination of Eurasian pine martens by radiographs of teeth in situ. Wildl. Soc. B 25, 83–88.Google Scholar
  26. Helldin, J.O., 1999. Diet, body condition, and reproduction of Eurasian pine martens Martes martes during cycles in microtine density. Ecography 22, 324–336.CrossRefGoogle Scholar
  27. Herr, J., Schley, L, Engel, E., Roper, T.J., 2010. Den preferences and denning behaviour in urban stone martens (Martes foina). Mamm. Biol. 75, 138–145.Google Scholar
  28. Hodgman, T.P., Harrison, D.J., Katnik, D.D., Elowe, K.D., 1994. Survival in an intensively trapped marten population in Maine. J. Wildl. Manage. 58, 593–600.CrossRefGoogle Scholar
  29. Holmes, T., Powell, R.A., 1994. Morphology, ecology, and the evolution of sexual dimorphism in North American Martes. In: Buskirk, S.W., Harestad, A.S., Raphael, M.G., Powell, R.A. (Eds.), Martens, Sables, and Fishers: Biology and Conservation. Cornell Univ. Press, Ithaca, NY, pp. 72–84.Google Scholar
  30. Johnston, D.H., Joachim, D.G., Bachmann, P., Kardong, K.V., Dix, L.M., Strickland, M.A., Watt, I.D., 1987. Aging furbearers using tooth structure and biomarkers. In: Novak, J.A.B.M., Obbard, M.E., Malloch, B. (Eds.), Wild Furbearer Management and Conservation in North America. Ontario Trappers Association, North Bay, pp. 228–243.Google Scholar
  31. Jombart, T., Devillard, S., Balloux, F., 2010. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 1–15.CrossRefGoogle Scholar
  32. Jombart, T., 2008. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405.CrossRefGoogle Scholar
  33. King, CM., 1991. A review of age determination methods for the stoat Mustela erminea. Mamm. Rev. 2, 31–49.Google Scholar
  34. Lanszki, J., Zalewski, A., Horvath, G., 2007. Comparison of red fox Vulpes vulpes and pine marten Martes martes food habits in a deciduous forest in Hungary. Wildl. Biol. 13, 258–270.CrossRefGoogle Scholar
  35. Larroque, J., Ruette, S., Vandel, J.M., Devillard, S., 2015. Where to sleep in a rural landscape? A comparative study of resting sites pattern in two syntopic Martes species. Ecography 38, 001–012.CrossRefGoogle Scholar
  36. Libois, R.M., Weachter, A., 1991. La fouine (Martes foina Erxleben, 1777). SFEPM, Nort-sur-Erdre, France.Google Scholar
  37. Loy, A., Spinosi, O., Carlini, R., 2004. Cranial morphology of Martes foina and M. martes (Mammalia, Carnivora, Mustelidae): the role of size and shape in sexual dimorphism and interspecific differentiation. Ital. J. Zool. 71, 27–35.CrossRefGoogle Scholar
  38. Marchesi, P., (Ph.D. thesis) 1989. Ecologie et comportement de la martre (Martes martes) dans le Jura suisse. Institut deZoologie, Université de Neuchatel, Suisse.Google Scholar
  39. Matson, G.M., Matson, J., 1993. Progress in cementum aging of martens and fishers. Special Report no. 931. Matson’s Laboratory Ed., Milltown, MT.Google Scholar
  40. Matson, G.M., 1981. Workbook forCementum Analysis. M. Matson’s Laboratory Ed., Montana.Google Scholar
  41. McDonald, R.A., 2002. Resource partitioning among British and Irish mustelids. J. Anim. Ecol. 71, 185–200.CrossRefGoogle Scholar
  42. Meiri, S., Dayan, T., 2003. On the validity of Bergmann’s rule. J. Biogeogr. 30, 331–351.CrossRefGoogle Scholar
  43. Meiri, S., Dayan, T., Simberloff, D., 2004. Carnivores, biases and Bergmann’s rule. Biol. J. Linn. Soc. 81, 579–588.CrossRefGoogle Scholar
  44. Mergey, M., Larroque, J., Ruette, S., Vandel, J.-M., Helder, R., Queney, G., Devillard, S., 2012. Linking habitat characteristics with genetic diversity ofthe European pine marten (Martes martes) in France. Eur. J. Wildl. Res. 58, 909–922.CrossRefGoogle Scholar
  45. Millspaugh, J.J., Skalski, J.R., Townsend, C.R., Diefenbach, D.R., Boyce, M.S., Hansen, LP., Kammermeyer, K., 2009. An evaluation of sex-age-kill (SIK) model performance. J. Wildl. Manage. 73, 442–451.CrossRefGoogle Scholar
  46. Moors, P.J., 1980. Sexual dimorphism in the body size of mustelids (Carnivora): the roles of food habits and breeding systems. Oikos 34, 147–158.CrossRefGoogle Scholar
  47. Morris, P., 1972. A review of mammalian age determination methods. Mamm. Rev. 2, 69–104.CrossRefGoogle Scholar
  48. Olifiers, N., de Cassia Bianchi, R., D’Andrea, P.S., Mourao, G., Gompper, M.E., 2010. Estimating age of carnivores from the Pantanal region of Brazil. Wildl. Biol. 16, 389–399.CrossRefGoogle Scholar
  49. Powell, R.A., Zielinski, W.J., 1983. Competition and coexistence in mustelid communities. Acta Zool. Fenn. 174, 223–227.Google Scholar
  50. R Core Team, 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria
  51. Reig, S., Ruprecht, A.L., 1989. Skull variability of Martes martes and Martes foina from Poland. Acta Theriol. 34, 595–624.CrossRefGoogle Scholar
  52. Reig, S., 1992. Goegraphic variation in pine marten (Martes martes) and beech marten (M. foina) in Europe. J. Mammal. 73, 744–769.CrossRefGoogle Scholar
  53. Remonti, L., Balestrieri, A., Ruiz-Gonzalez, A., Gomez-Moliner, B.J., Capelli, E., Prigioni, C., 2012. Intraguild dietary overlap and its possible relationship to the coexistence of mesocarnivores in intensive agricultural habitats. Popul. Ecol. 54, 521–532.CrossRefGoogle Scholar
  54. Rosalino, L.M., Santos, M.J., Domingos, S., Rodrigues, M., Santos-Reis, M., 2005. Population structure and body size of sympatric carnivores in a Mediterranean landscape of SW Portugal. Rev. Biol. (Lisboa) 23, 135–146.Google Scholar
  55. Rosenzweig, M.L., 1966. Community structure in sympatric carnivora. J. Mammal. 47, 602–612.CrossRefGoogle Scholar
  56. Ruette, S., Vandel, J.M., Albaret, M., Devillard, S., 2015. Comparative survival pattern of the syntopic pine and stone martens in a trapped rural area in France. J. Zool. 295, 214–222.CrossRefGoogle Scholar
  57. Ryabov, L.S., 1962. The morphological development of Caucasian pine martens and stone martens in relation to age determination. In: King, CM. (Ed.), Biology of Mustelids. Some Soviet Research. British Library Lending Division, UK, pp. 145–157.Google Scholar
  58. Schmidt, N.M., Jensen, P.M., 2003. Changes in mammalian body length over 175 years - adaptations to fragmented landscape? Conserv. Ecol. 7,6.Google Scholar
  59. Sidorovich, E., Krasko, D.A., Dyman, A.A., 2005. Landscape-related differences in diet, food supply and distribution pattern of the pine marten, Martes martes in the transitional mixed forest of northern Belarus. Folia Zool. 54, 39–52.Google Scholar
  60. Skalski, J.R., Townsend, R.L., Gilbert, B.A., 2007. Calibrating statistical population reconstruction models using catch-effort and index data. J. Wildl. Manage. 71, 1309–1316.CrossRefGoogle Scholar
  61. Stahl, P., Ruette, S., Gros, L., 2002. Predation on free-ranging poultry by mammalian and avian predators: field loss estimates in a French rural area. Mamm. Rev. 32, 227–234.CrossRefGoogle Scholar
  62. Stander, P.E., 1997. Field age determination of leopards by tooth wear. Afr. J. Ecol. 35, 156–161.CrossRefGoogle Scholar
  63. Strickland, M.A., Douglas, C.W., 1987. Marten. In: Novak, M., Baker, J.A., Obbard, M.E., Malloch, B. (Eds.), Wild Furbearer Management and Conservation in North America. Ontario Trappers Association, pp. 531–546.Google Scholar
  64. Van Horn, R.C., McElhinny, T.L., Holekamp, K.E., 2003. Age estimation and dispersal in the spotted hyena (Crocuta crocuta). J. Mammal. 84, 1019–1030.CrossRefGoogle Scholar
  65. von Bertalanffy, L., 1938. A quantitative theory of organic growth. Hum. Biol. 10, 181–213.Google Scholar
  66. Yom-Tov, Y., Heggberget, T.M., Wiig, O., Yom-Tov, S., 2006. Body size changes among otters, Lutra lutra, in Norway: the possible effect of food availability and global warming. Oecologia 150, 155–160.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Yom-Tov, Y., Leader, N., Yom-Tov, S., Baagøe, H.J., 2010. Temperature trends and recent decline in body size of the stone marten Martes foina in Denmark. Mamm. Biol. 75, 146–150.CrossRefGoogle Scholar
  68. Yom-Tov, Y., Yom-Tov, S., Baagoe, H., 2003. Increase of skull size in the red fox (Vulpes vulpes) and Eurasian badger (Meles meles) in Denmark during the twentieth century: an effect of improved diet? Evol. Ecol. Res. 5, 1037–1048.Google Scholar
  69. Yom-Tov, Y., Yom-Tov, S., Jarrell, G., 2008. Recent increase in body size of the American marten Martes americana in Alaska. Biol. J. Linn. Soc. 93, 701–707.CrossRefGoogle Scholar
  70. Zalewski, A., 2007. Does size dimorphism reduce competition between sexes? The diet of male and female pine martens at local and wider geographical scales. Acta Theriol. 52, 237–250.CrossRefGoogle Scholar
  71. Zalewski, A., Jedrezejewski, W.,Jedrezejewski, B., 1995. Pine marten home ranges, numbers and predation on vertebrates in a deciduous forest (Bialowieza National Park, Poland). Ann. Zool. Fenn. 32, 131–144.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2015

Authors and Affiliations

  • Sandrine Ruette
    • 1
    Email author
  • Jérémy Larroque
    • 1
    • 2
  • Michel Albaret
    • 1
  • Jean-Michel Vandel
    • 1
  • Sébastien Devillard
    • 2
  1. 1.Office National de la Chasse et de la Faune SauvageCNERA-PAD, MontfortBirieuxFrance
  2. 2.Université de Lyon, CNRS, UMR5558, Laboratoire de Biométrie et Biologie EvolutiveUniversité Lyon 1VilleurbanneFrance

Personalised recommendations