Comparative phylogeography of Meriones meridianus, Dipus sagitta, and Allactaga sibirica: Potential indicators of the impact of the Qinghai-Tibetan Plateau uplift
Abstract
We conducted a comparative phylogeographic analysis of three rodent species (Meriones meridianus, Dipus sagitta, and Allactaga sibirica) on the northeast margin of the Qinghai-Tibetan Plateau, Qaidam Basin, the Hexi Corridor and Tengger-Badain Jaran Desert based on sequences of the mitochondrial cytochrome b gene of 264 individuals from 22 sampling sites. Our analyses indicated that the intraspecific genetic structures of the three rodents did not arise through the same historical events and that they did not show parallel geological and climatic histories. M. meridianus and D. sagitta, which showed low-altitude distributions, experienced less isolation because they stayed in stable favorable habitats. On the other hand, A. sibirica was strongly isolated due to fragmented habitats caused by the complex topography of the high-altitude regions in the Qaidam Basin. The two desert-dwelling rodent species, M. meridianus (0.023-0.014 Mya) and D. sagitta (0.013-0.009 Mya), showed sudden demographic expansion during the Last Glacial Maximum, with the disappearance of the ancient lakes and the maximum extent of desert expansion. A. sibirica is mostly distributed in the grassland mountain regions. Thus, steppe expansion and a sharp decrease in the ancient lake size significantly affected the species’ distribution during the Middle Pleistocene (0.525 Mya). No clear signal of population expansion was observed for this species, which might be attributable to successive phases of population bottlenecks obscuring the indicators of expansion. Our data reflect the continual interaction of extrinsic and intrinsic factors in generating intraspecific phylogeographic patterns and faunal diversity.
Keywords
Comparative phylogeography Cytochrome b gene Meriones meridianus Allactaga sibirica Dipus sagittaPreview
Unable to display preview. Download preview PDF.
References
- Arbogast, B.S., Kenagy, G., 2001. Comparative phylogeography as an integrative approachto historical biogeography.J. Biogeogr. 28, 819–825.CrossRefGoogle Scholar
- Arbogast, B.S., Browne, R.A., Weigl, P.D., 2001. Evolutionary genetics and Pleistocene biogeography of North American tree squirrels (Tamiasciurus). J. Mammal. 82, 302–319.CrossRefGoogle Scholar
- Avise, J.C., Arnold, J., Ball, R.M., Bermingham, E., Lamb, T., Neigel, J.E., Reeb, C.A., Saunders, N.C., 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Syst. 18, 489–522.CrossRefGoogle Scholar
- Bandelt, H.J., Forster, P., Rohl, A., 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48.PubMedPubMedCentralCrossRefGoogle Scholar
- Bermingham, E., Moritz, C, 1998. Comparative phylogeography: concepts and applications. Mol. Ecol. 7, 367–369.CrossRefGoogle Scholar
- Brouat, C, Tatard, C, Bâ, K., Cosson, J.F., Dobigny, G., Fichet-Calvet, E., Granjon, L, Lecompte, E., Loiseau,A., Mouline, K., Piry, S., Duplantier,J.-M., 2009. Phylogeography of the Guinea multimammate mouse (Mastomys erythroleucus): a case study for Sahelian species in West Africa. J. Biogeogr. 36, 2237–2250.CrossRefGoogle Scholar
- Brylski, P., Hall, B., 1988. Epithelial behaviors and threshold effects in the development and evolution of internal and external cheek pouches in rodents. J. Zool. Syst. Evol. Res. 26, 144–154.CrossRefGoogle Scholar
- Cai, B., Li, Q., Zheng, S., 2008. Fossil mammals from Majuangou section of Nihewan Basin. China and their age. Acta Anthropol. Sin. 27, 129–142.Google Scholar
- Chen, T., Ren, J., Wang, H.S., Ma, S.Z., Li, X.F., 1992. he effect of the environmental change on the fauna evolution in Qinghai lake region. J. Lake Sci. 4, 41–47.CrossRefGoogle Scholar
- Cui, Z., Chen, Y., Zhang, W., 2011. Research history, clacial chronology and origins of Quaternary glaciations in China. Quat. Sci. 31, 749–764.Google Scholar
- Deng, T., 2008. Response of mammalian evolution to the Neogene climatic and environmental changes in China. Chin. J. Nat. 6, 334–339, 372–373.Google Scholar
- Dong, G., Gao, Q., Zou, X., Li, B., Yan, M., 1995. Climatic changes since the late pleistocene in deserts of Badain Jaran Desert. Chin. Sci. Bull. 13, 1214–1218.CrossRefGoogle Scholar
- Drummond, A.J., Rambaut, A., 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214.PubMedPubMedCentralGoogle Scholar
- Drummond, A.J., Ho, S.Y.W., Phillips, M.J., Rambaut, A., 2006. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88.PubMedPubMedCentralCrossRefGoogle Scholar
- Drummond, A.J., Ho, S.Y.W., Rawlence, N., Rambaut, A., 2007. A Rough Guide to BEAST 1.4. University of Auckland, Auckland, New Zealand.Google Scholar
- Excoffier, L., Laval, G., Schneider, S., 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47–50.Google Scholar
- Fang, X., Shi, Z., Yang, S., Li, J., Jiang, P., 2002. The development of Tianshan loess and Gurbantunggut Desert and aridification in North Xinjiang. Chin. Sci. Bull. 7, 540–545.Google Scholar
- Fedorov, V.B., Goropashnaya, A.V., Boeskorov, G.G., Cook, J.A., 2008. Comparative phylogeography and demographic history of the wood lemming (Myopus schis-ticolor): implications for late Quaternary history of the taiga species in Eurasia. Mol. Ecol. 17, 598–610.PubMedCrossRefPubMedCentralGoogle Scholar
- Fu, Y., 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925.PubMedPubMedCentralGoogle Scholar
- Gaubert, P., Machordom, A., Morales, A., López-Bao, J.V., Veron, G., Amin, M., Bar-ros, T., Basuony, M., Djagoun, C.A.M.S., Do Linh San, E., Fonseca, C, Geffen, E., OnderOzkurt, S., Cruaud, C, Couloux, A., Palomares, F., 2011. Comparative phylogeography of two African carnivorans presumably introduced into Europe: disentangling natural versus human-mediated dispersal across the Strait of Gibraltar. J. Biogeogr. 38, 341–358.CrossRefGoogle Scholar
- Girman, D.J., Vilà, C, Geffen, E., Creel, S., Mills, M.G., McNutt, J.W., Ginsberg, J., Kat, P.W., Mamiya, K.H., Wayne, R.K., 2001. Patterns of population subdivision, gene flow and genetic variability in the African wild dog (Lycaonpictus). Mol. Ecol. 10, 1703–1723.PubMedCrossRefPubMedCentralGoogle Scholar
- Gu, Z., Wang, R., Hong, D., 1985. Hipparion were found on north-eastern fringes of the Qinghai-Tibet Plateau. Vertebr. Palasiat. 23, 246.Google Scholar
- Hickerson, M., Carstens, B., Cavender-Bares, J., Crandall, K., Graham, C, Johnson, J., Rissler, L., Victoriano, P., Yoder, A., 2010. Phylogeography’s past, present, and future: 10 years after Avise, 2000. Mol. Phylogenet. Evol. 54, 291–301.PubMedCrossRefPubMedCentralGoogle Scholar
- Huelsenbeck, J., Ronquist, F., 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.CrossRefGoogle Scholar
- Huhndorf, M.H., Kerbis Peterhans, J.C., Loew, S.S., 2007. Comparative phylogeography of three endemic rodents from the Albertine Rift, east central Africa. Mol. Ecol. 16, 663–674.PubMedCrossRefPubMedCentralGoogle Scholar
- Irwin, D., Kocher, T., Wilson, A., 1991. Evolution of the cytochrome bgene of mammals. J. Mol. Evol. 32, 123–144.CrossRefGoogle Scholar
- Jin, Y., Brown, R., Liu, N., 2008. Cladogenesisand phylogeography of the lizard Phrynocephalus vlangalii (Agamidae) on the Tibetan plateau. Mol. Ecol. 17, 1971–1982.PubMedCrossRefPubMedCentralGoogle Scholar
- Li, C.,1981. Pontiansand-rat from Yushe basin, Shansi. Vertebr. Palasiat. 19, 321–326.Google Scholar
- Li, J., Fang, X., Pan, B., Zhao, Z., Song, Y., 2001. Late Cenozoic intensive uplift of Qinghai-Xizang plateau and its impacts on environments in surrounding area. Quat. Sci. 21, 381–391.Google Scholar
- Liu, H., Feng, J., Li, C, Shi, Y., Yang, G., Chen, Z., Wang, G., 1984. The ecological studies and investigations of Meriones meridianus. Chin. J. Zool. 4, 21–25.Google Scholar
- Lu, B., Zheng, Y., Murphy, R.W., Zeng, X., 2012. Coalescence patterns of endemic Tibetan species of stream salamanders (Hynobiidae: Batrachuperus). Mol. Ecol. 12, 3308–3324.CrossRefGoogle Scholar
- Luo, Z., Chen, W., Gao, W., 2000. Fauna sinica, Mammalia-Rodentia part III: Criceti-dae. Science Press, Beijing.Google Scholar
- Moussalli, A., Moritz, C, Williams, S.E., Carnaval, A.C., 2009. Variable responses of skinks to a common history of rainforest fluctuation: concordance between phylogeography and palaeo-distribution models. Mol. Ecol. 18, 483–499.PubMedCrossRefPubMedCentralGoogle Scholar
- Myers, N., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853–858.PubMedPubMedCentralCrossRefGoogle Scholar
- Nicolas, V., Mboumba,J.F., Verheyen, E., Denys, C, Lecompte, E., Olayemi, A., Missoup, A.D., Katuala, P., Colyn, M., 2008. Phylogeographic structure and regional history of Lemniscomys striatus (Rodentia: Muridae) in tropical Africa. J. Biogeogr. 35, 2074–2089.CrossRefGoogle Scholar
- Nylander, J.A.A., 2004. MrModeltest v2. Program Distributed by the Author. Evolutionary Biology Centre, Uppsala University.Google Scholar
- Perdices, A., Coelho, M., 2006. Comparative phylogeography of Zacco platypus and Opsariichthys bidens (Teleostei, Cyprinidae) in China based on cytochrome b sequences. J. Zool. Syst. Evol. Res. 44, 330–338.CrossRefGoogle Scholar
- Polzin, T., Daneshmand, S.V., 2003. On Steiner trees and minimum spanning trees in hypergraphs. Oper. Res. Lett. 31, 12–20.CrossRefGoogle Scholar
- Pybus, O., Rambaut, A., 2002. GENIE: estimating demographic history from molecular phylogenies. Bioinformatics 18, 1404–1405.PubMedCrossRefGoogle Scholar
- Qiu, Z., Li, C, 2004. Evolution of cenozoic mammalian faunal regions of China and the Qinghai-Tibet uplift. Sci. China Ser. D: Earth Sci. 9, 845–854.Google Scholar
- Qu, Y., Lei, F., 2009. Comparative phylogeography of two endemic birds of the Tibetan plateau, the white-rumped snow finch (Onychostruthus taczanowskii) and the Hume’s ground tit (Pseudopodoces humilis). Mol. Phylogenet. Evol. 51, 312–326.PubMedCrossRefPubMedCentralGoogle Scholar
- Qu, Y., Lei, F., Zhang, R., Lu, X., 2010. Comparative phylogeography of five avian species: implications for Pleistocene evolutionary history in the Qinghai-Tibetan plateau. Mol. Ecol. 19, 338–351.PubMedCrossRefPubMedCentralGoogle Scholar
- Rambaut, A., 2009. Computer program and documentation distributed by the author, beastbioedacuk.Google Scholar
- Rambaut, A., Drummond, A., 2007. Tracer, version 1.4 Computer program and documentation distributed by the author, https://doi.org/beast.bio.ed.ac.uk.
- Renaud, S., Auffray, J., 2009. Adaptation and plasticity in insular evolution of the house mouse mandible. J. Zool. Syst. Evol. Res. 48, 138–150.CrossRefGoogle Scholar
- Rogers, A.R., Harpending, H., 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552.Google Scholar
- Rozas, J., Sánchez-DelBarrio, J.C., Messeguer, X., Rozas, R., 2003. DnaSP DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496.CrossRefGoogle Scholar
- Rozihan, M., Ismail, E., 2011. Impact of Malaysian continental drift on the genetic diversity of horseshoe crab inferred through mt DNA sequence analysis. Int. J. Biol. 4, 104–110.CrossRefGoogle Scholar
- Sakka, H., QuÉRÉ, J.P., Kartavtseva, I., Pavlenko, M., Chelomina, G., Atopkin, D., Bog-danov, A., Michaux, J., 2010. Comparative phylogeography of four Apodemus species (Mammalia: Rodentia) in the Asian Far East: evidence of quaternary climatic changes in their genetic structure. Biol. J. Linn. Soc. 100, 797–821.CrossRefGoogle Scholar
- Schneider, S., Roessli, D., Excoffier, L., 2000. Arlequin: a software for population genetics data analysis. User manual ver 2., pp. 2496–2497.Google Scholar
- Shi, Z., Fang, X., Song, Y., An, Z., Yang, S., 2006. Loess sediments in the north slope of Tianshan mountains and its indication of desertification since middle pleistocene. Mar. Geol. Quat. Geol. 3, 109–114.Google Scholar
- Steel, M., McKenzie, A., 2001. Properties of phylogenetic trees generated by Yule-type speciation models. Math. Biosci. 170, 91–112.PubMedCrossRefPubMedCentralGoogle Scholar
- Swofford, D.L., 2003. PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods). Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
- Tajima, F., 1989. The effect of change in population size on DNA polymorphism. Genetics 123, 597.Google Scholar
- Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.PubMedPubMedCentralCrossRefGoogle Scholar
- Tang, L., Wang, L., Cai, Z., Zhang, T., Ci, H., Lin, G., Su, J., Liu, J., 2010. Allopatric divergence and phylogeographic structure of the plateau zokor (Eospalax baileyi), a fossorial rodent endemic to the Qinghai-Tibetan Plateau. J. Biogeogr. 37, 657–668.CrossRefGoogle Scholar
- Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876.PubMedPubMedCentralCrossRefGoogle Scholar
- Wang, X., Xie, G., Li, Q., Qiu, Z., Tseng, Z.J., Takeuchi, G.T., Wang, B., Fortelius, M., Rosenstr(O)M-Fortelius, A., Wahlquist, H., Downs, W.R., Zhang, C, Wang, Y., 2011. Early explorations of Qaidam basin (Tibetan plateau) by Birger Bohlin-reconciling classic vertebrate fossil localities with modern biostratigraphy. Vertebr. Palasiat. 49, 285–310.Google Scholar
- Zhan, X., Zheng, Y., Wei, F., Bruford, M.W., Jia, C, 2011. Molecular evidence for Pleistocene refugia at the eastern edge of the Tibetan Plateau. Mol. Ecol. 20, 3014–3026.PubMedCrossRefPubMedCentralGoogle Scholar
- Zhang, R., 1979. Chinese Nature Geoscience. Science Press, Beijing.Google Scholar
- Zhang, L., Song, Y., 2001. The effect of the Qinghai-Tibet Plateau uplift on the space-time distributing pattern of Chinese desert and desertification. China Popul. Resour. Environ. 3, 367–372.Google Scholar
- Zhang, J., Wang, Z., 1963. Faunistic studies of mammals of the Chinghai province. Acta Zool. Sin. 15, 125–127.Google Scholar
- Zhang, R., Zheng, C, 1985. The geographical distribution of mammals and the evolution of mammalian fauna in Qinghai-Xizang Plateau. Acta Geogr. Sin. 40, 225–230.Google Scholar
- Zhang, Q., Chiang, T., George, M., Liu, J., Abbott, R., 2005. Phylogeography of the Qinghai-Tibetan Plateau endemic Juniperus przewalskii (Cupressaceae) inferred from chloroplast DNA sequence variation. Mol. Ecol. 14, 3513–3524.PubMedCrossRefPubMedCentralGoogle Scholar
- Zhao, K., 1991. China’s Jerboas. J. Suzhou Railw. Normal Coll. 8, 29–36.Google Scholar
- Zhao, Q., Liu, H., Luo, L.,Ji,X., 2011. Comparative population genetics and phylogeography of two lacertid lizards (Eremias argus and E. brenchleyi) from China. Mol. Phylogenet. Evol. 58, 478–491.PubMedCrossRefPubMedCentralGoogle Scholar
- Zheng, S., Cai, B., Li, Q., 2006. The Plio-Pleistocen small mammals from Donggou section of Nihewan Basin, Hebei, China. Vertebr. Palasiat. 44, 320–331.Google Scholar
- Zhou, L, Ma, Y., Li, D., 2001. Spatial distribution patterns of Chinese gerbils (gerbilline) in relation to environmental factors. Acta Zool. Sin. 47, 616–624.Google Scholar
- Zhu, X., Kang, A., Han, D., Wang, Y., Kang, Q., 2003. Relation among Quaternary environmental evolution, tectonic deformation in the Qaidam Basin and uplifting of the Qinghai-Tibet Plateau. Chin. J. Geol. 38, 367–376.Google Scholar