Mammalian Biology

, Volume 81, Issue 1, pp 46–52 | Cite as

Microbial diversity in forestomach and caecum contents of the greater long-tailed hamster Tscherskia triton (Rodentia: Cricetidae)

  • Akio Shinohara
  • Eita Uchida
  • Hiroki Shichijo
  • Shinsuke H. Sakamoto
  • Tetsuo Morita
  • Chihiro KoshimotoEmail author
Original Investigation


The mammalian gastrointestinal tract has evolved to facilitate food utilisation. Hamsters within the subfamily Cricetinae (Rodentia, Cricetidae) have a compartmentalised stomach consisting of a forestomach and a glandular stomach. The role of the forestomach in hamsters has long been discussed. In this study, we evaluated the microflora and volatile fatty acid contents of the large forestomach and caecum of a greater long-tailed hamster (Tscherskia triton). The estimated bacterial biodiversity in the forestomach based on 16S rRNA library sequencing analyses was low (sequence n = 226, Shannon index H′ = 2.12) compared to that in the rumen of ruminants. In contrast, the bacterial diversity in the caecum was very high (n = 259, H′ = 4.45), and comparable to that of other hindgut fermenters. The forestomach bacterial flora was dominated by Lactobacillus spp. (179/226 clones), and high concentrations of lactic acid were observed in the forestomach. These results indicate that the forestomach does not function like the rumen of ruminants, but that lactic acid fermentation does take place in this compartment. The caecum is thought to play a more important role in food digestion via fermentation by symbiotic microbes than the forestomach. When all cloned 16S rRNA gene sequences (n = 485) were grouped into operational taxonomic units (OTUs) with 97% similarity, the majority of clones isolated from the forestomach contents were also present in the caecum (85.4%), although fewer clones isolated from the caecum contents shared OTUs with clones from the forestomach (19.3%). Based on these results, we hypothesise that bacteria were transferred from the caecum to the forestomach by coprophagy.


Microflora Forestomach Caecum Granivore Hamster 16S rRNA 



high-performance liquid chromatography


operational taxonomic unit


volatile fatty acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, G.M., 1938. The Mammals of China and Mongolia, Natural History of Central Asia Vol. XI, Part 1. The American Museum of Natural History, New York.Google Scholar
  2. Ben Salah-Abbès, J., Abbès, S., Jebali, R., Haous, Z., Oueslati, R., 2014. Potential preventive role of lactic acid bacteria against aflatoxin M1 immunotoxicity and genotoxicity in mice. J. Immunotoxicol., (in press; Available online ahead of print).PubMedCrossRefPubMedCentralGoogle Scholar
  3. Björnhag, G., Snipes, R.L., 1999. Colonic separation mechanism in lagomorph and rodent species — a comparison. Mitt. Mus. Naturkd. Berlin Zool. Reihe 75, 275–281.Google Scholar
  4. Carleton, M.D., 1973. A survey ofgress stomach morphology in New World Cricetinae (Rodentia, Muroidea), with comments on functional interpretations. Misc. Publ. Mus. Zool., Univ. Mich. 146, 1–43.Google Scholar
  5. Chao, A., 1984. Non-parametric estimation of the number of classes in a population. Scand. J. Statist. 11, 265–270.Google Scholar
  6. Chao, A., Lee, S.M., 1992. Estimating the number of classes via sample coverage. J. Am. Stat. Assoc. 87, 210–217.CrossRefGoogle Scholar
  7. Chivers, D.J., Langer, P., 1994. The Digestive System in Mammals: Food, Form and Function. Cambridge University Press, New York.CrossRefGoogle Scholar
  8. Cole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J., Kulam-Syed-Mohideen, A.S., McGarrell, D.M., Marsh, T., Garrity, G.M., Tiedje, J.M., 2009. The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, D141–D145.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Dalié, D.K.D., Deschamps,A.M., Richard-Forget, F., 2010. Lactic acid bacteria–potential for control of mould growth and mycotoxins: a review. Food Control 21, 370–380.CrossRefGoogle Scholar
  10. Dehority, B.A., 1997. Foregut fermentation. In: Mackie, R.T., White, B.A. (Ed.), Gastrointestinal Microbiology Volume 1 Gastrointestinal Ecosystems and Fermentations. Chapman & Hall, New York, pp. 39–83.Google Scholar
  11. Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C, Knight, R., 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Edwards, J.E., McEwan, N.R., Travis, A.J., Wallace, R.J., 2004.16S rDNA library-based analysis of ruminal bacterial diversity. Antonie Van Leeuwenhoek 86, 263–281.Google Scholar
  13. Ehle, F.R., Warner, R.G., 1978. Nutritional implications of the hamster forestomach. J. Nutr. 108, 1047–1053.PubMedCrossRefPubMedCentralGoogle Scholar
  14. El-Nezami, H., Kankaanpaa, P., Salminen, S., Ahokas, J., 1998. Ability of dairy strains of lactic acid bacteria to bind common food carcinogen, aflatoxin B1. FoodChem. Toxicol. 36, 321–326.PubMedCrossRefPubMedCentralGoogle Scholar
  15. El-Nezami, H.S., Chrevatidis, A., Auriola, S., Salminen, S., Mykkänen, H., 2002. Removal of common fusarium toxins in vitro by strains of Lactobacillus and Propionibacterium. Food. Addit. Contam. 19, 680–686.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Feldhamer, G.A., Drickamer, L.C., Vessey, S.H., Merritt, J.F., Krajewski, C, 2007. Mammalogy: Adaptation, Diversity, and Ecology, 3rd ed. The Johns Hopkins University Press, Baltimore.Google Scholar
  17. Fuchs, S., Sontag, G., Stidl, R., Ehrlich, V., Kundi, M., Knasmüller, S., 2008. Detoxification of patulin and ochratoxin A, two abundant mycotoxins, by lactic acid bacteria. Food Chem. Toxicol. 46, 1398–1407.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Good, I.J., 1953. The population frequencies of species and the estimation of population parameters. Biometrika 40, 237–264.CrossRefGoogle Scholar
  19. Hammes, W.P., Hertel, C, 2009. Genus I. Lactobacillus Beijerinck 1901. In: De Vos, P., Garrity, G.M., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., Schleifer, K.H., Whitman, W.B. (Ed.), Bergey’s Manual of Systematic Bacteriology, second ed., Vol.3, The Firmicutes. Springer, New York, pp. 465–511.Google Scholar
  20. Herrera, J., Kramer, C.L., Reichman, O.J., 1997. Patterns of fungal communities that inhabit rodent food stores: effect of substrate and infection time. Mycologia 89, 846–857.CrossRefGoogle Scholar
  21. Hathout, A.S., Mohamed, S.R., El-Nekeety, A.A., Hassan, N.S., Aly, S.E., Abdel-Wahhab, M.A., 2011. Ability of Lactobacillus casei and Lactobacillus reuteri to protect against oxidative stress in rats fed aflatoxins-contaminated diet. Toxicon 58, 179–186.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Hoover, W.H., Mannings, C.L., Sheerest, H.E., 1969. Observations on digestion in the golden hamster. J. Anim. Sci. 28, 349–352.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Hussein, H.S., Brasel, J.M., 2001. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 167, 101–134.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Kararli, T.T., 1995. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm. Drug Dispos. 16, 351–380.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Kohl, K.D., Dearing, M.D., 2012. Experience matters: prior exposure to plant toxins enhances diversity of gut microbes in herbivores. Ecol. Lett. 15, 1008–1015.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Kohl, K.D., Weiss, R.B., Dale, C, Dearing, M.D., 2011. Diversity and novelty of the gut microbial community of an herbivorous rodent (Neotoma bryanti). Symbiosis 47, 47–54.CrossRefGoogle Scholar
  27. Kohl, K.D., Stengel, A., Samuni-Blank, M., Dearing, M.D., 2013. Effects of anatomy and diet on gastrointestinal pH in rodents. J. Exp. Zool. Part A 319, 225–229.CrossRefGoogle Scholar
  28. Kohl, K.D., Miller, A.W., Marvin, J.E., Mackie, R., Dearing, M.D., 2014. Herbivorous rodents (Neotoma spp.) harbour abundant and active foregut microbiota. Environ. Microbiol. 16, 2869–2878.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Krause, D.O., Russell, J.B., 1996. How many ruminal bacteria are there? J. Dairy Sci. 79, 1467–1475.CrossRefGoogle Scholar
  30. Kunstyr, I., 1974. Some quantitative and qualitative aspects of the stomach microflora of the conventional rat and hamster. Zbl. Vet. Med. A. 21, 553–561.CrossRefGoogle Scholar
  31. Ley, R.E., Hamady, M., Lozupone, C, Turnbaugh, P.J., Ramey, R.R., Bircher, J.S., Schlegel, M.L., Tucker, T.A., Schrenzel, M.D., Knight, R., Gordon, J.I., 2008. Evolution of mammals and their gut microbes. Science 320, 1647–1651.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Landry Jr., S.O., 1970. The rodentia as omnivores. Q. Rev. Biol. 45, 351–372.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Lu, H.P., Wang, Y.B., Huang, S.W., Lin, C.Y., Wu, M., Hsieh, C.H., Yu, H.T., 2012. Metage-nomic analysis reveals a functional signature for biomass degradation by cecal microbiome in the leaf-eating flying squirrel (Petaurista alborufus lena). BMC Genomics 13, 466.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Monteils, V., Cauquil, L, Combes, S., Godon, J.J., Gidenne, T., 2008. Potential core species and satellite species in the bacterial community within the rabbit caecum. FEMS Mcrobiol. Ecol. 66, 620–629.CrossRefGoogle Scholar
  35. Nikbakht Nasrabadi, E., Jamaluddin, R., Abdul Mutalib, M.S., Khazaai, H., Khalesi, S., Mohd Redzwan, S., 2013. Reduction of aflatoxin level in aflatoxin-induced rats by the activity of probiotic Lactobacillus casei strain Shirota. J. Appl. Microbiol. 114, 1507–1515.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Nowak, R.M., 1999. Walker’s Mammals of the World, 6th ed. The Johns Hopkins Univ. Press, Baltimore.Google Scholar
  37. Reichman, O.J., Wicklow, D.T., Rebar, C, 1985. Ecological and mycological characteristics of caches in the mounds of Dipodomys spectabilis. J. Mamml. 66, 643–651.CrossRefGoogle Scholar
  38. Richard, J.L., 2007. Some major mycotoxins and their mycotoxicoses — an overviews. Int. J. Food Microbiol. 119, 3–10.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Sakaguchi, E., 1991. Comparative aspects of fiber digestion and digesta transit in caecum fermenters. In: Sakata, T., Snipes, R.L. (Ed.), Hindgut 91. Senshu Univ. Press, Tokyo, pp. 49–69.Google Scholar
  40. Sakaguchi, E., 2003. Digestive strategies of small hindgut fermenters. Anim. Sci. J. 74, 327–337.CrossRefGoogle Scholar
  41. Sakaguchi, E., Itoh, J., Shinohara, H., Matsumoto, T., 1981. Effects of removal of the forestomach and caecum on the utilization of dietary urea in golden hamsters (Mesocricetus auratus) given two different diets. Br. J. Nutr. 46, 503–512.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Sakata, T., Tamate, H., 1976. Light and electron microscopic observation of the forestomach mucosa in the golden hamster. Tohoku J. Agric. Res. 27, 26–39.Google Scholar
  43. Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B., Thallinger, G.G., Van Horn, D.J., Weber, C.F., 2009. Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Shannon, C.E., 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423.CrossRefGoogle Scholar
  45. Shichijo, H., Kondo, Y., Sakamoto, S.H., Kashimura, A.,Takahashi,T., Morita,T., 2013a. Effects of cecal resection on coprophagy in the rat-like hamster Tscherskia triton. Jpn. J. Environ. Entomol. Zool. 24, 51–57 (in Japanese with English abstract).Google Scholar
  46. Shichijo, H., Takahashi, T., Kondo, Y., Sakamoto, S.H., Morita, T., 2013b. Nutritional significance of coprophagy in the rat-like hamster Tscherskia triton. Mammalia 77, 329–333.Google Scholar
  47. Simpson, E.H., 1949. Measurement of diversity. Nature 163, 688.CrossRefGoogle Scholar
  48. Smith, H.W., 1965. Observations on the flora of the alimentary tract of animals and factors affecting its composition. J. Pathol. Bacteriol. 89, 95–122.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Sundset, M.A., Praesteng, K.E., Cann, I.K., Mathiesen, S.D., Mackie, R.I., 2007. Novel rumen bacterial diversity in two geographically separated sub-species of reindeer. Microb. Ecol. 54, 424–438.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Stevens, C.E., Hume, I.D., 1995. Comparative Physiology of the Vertebrate Digestive System, 2nd ed. Cambridge University Press, Cambridge.Google Scholar
  51. Tajima, K., Aminov, R.I., Nagamine, T., Ogata, K., Nakamura, M., Matsui, H., Benno, Y., 1999. Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries. FEMS Microbiol. Ecol. 29, 159–169.CrossRefGoogle Scholar
  52. Tajima, K., Arai, S., Ogata, K., Nagamine, T., Matsui, H., Nakamura, M., Aminov, R.I., Benno, Y., 2000. Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe 6, 273–284.CrossRefGoogle Scholar
  53. Toepfer, K., 1891. Die morphologie des magens der rodentia. Morphologisches Jahrbuch 17,380-407+TableXXIV.Google Scholar
  54. Tomas,J., Langella, P., Cherbuy, C, 2012. The intestinal microbiota in the rat model: major breakthroughs from new technologies. Anim. Health. Res. Rev. 13, 54–63.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Tsytsulina, K., 2008. Tscherskia triton. The IUCN Red List of Threatened Species, ver. 2014.2. Downloaded on 18 September 2014.
  56. Vorontsov, N.N., 1962. The ways of food specialization and evolution of the alimentary system in Muroidea. In: Kratochvíl, J., Pelikán, J. (Ed.), Symposium Theriologicum. Publishing House of the Czechoskovak Academy of Sciences, Praha, pp. 360–377.Google Scholar
  57. Wang, Q.,Garrity,G.M.,Tiedje,J.M.,Cole,J.R., 2007. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Wang, S., Yang, H., Hao, S., 1996. Activity range, activity rhythm and food preference in ratlike hamster (Cricetulus triton). Chin. J. Zool. 31, 28–44 (in Chinese with English summary).Google Scholar
  59. Whiteford, M.F., Forster, R.J., Beard, C.E., Gong, J., Teather, R.M., 1998. Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe 4, 153–163.CrossRefGoogle Scholar
  60. Wilman, H., Belmaker, J., Simpson, J., de la Rosa, C, Rivadeneira, M.M., Jetz, W., 2014. Elton traits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027.CrossRefGoogle Scholar
  61. Yang, L.Y., Chen, J., Cheng, X.L., Xi, D.M., Yang, S.L., Deng, W.D., Mao, H.M., 2010a. Phylogenetic analysis of 16S rRNA gene sequences reveals rumen bacterial diversity in Yaks (Bos grunniens). Mol. Biol. Rep. 37, 553–562.CrossRefGoogle Scholar
  62. Yang, S., Ma, S., Chen, J., Mao, H., He, Y., Xi, D., Yang, L, He, T., Deng, W., 2010b. Bacterial diversity in the rumen of gayals (Bos frontalis), swamp buffaloes (Bubalus bubalis) and holstein cow as revealed by cloned 16S rRNAgene sequences. Mol. Biol. Rep. 37, 2063–2073.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Zhu, L, Wu, Q., Dai, J., Zhang, S., Wei, F., 2011. Evidence of cellulose metabolism by the giant panda gut microbiome. Proc. Natl. Acad. Sci. U. S. A. 108,17714–17719.Google Scholar
  64. Zoetendal, E.G., Rajilic-Stojanovic, M., de Vos, W.M., 2008. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57, 1605–1615.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2014

Authors and Affiliations

  • Akio Shinohara
    • 1
  • Eita Uchida
    • 1
  • Hiroki Shichijo
    • 1
  • Shinsuke H. Sakamoto
    • 1
  • Tetsuo Morita
    • 2
  • Chihiro Koshimoto
    • 1
    Email author
  1. 1.Division of Bio-resources, Department of BiotechnologyFrontier Science Research Center, University of MiyazakiMiyazakiJapan
  2. 2.Department of Animal and Grassland SciencesFaculty of Agriculture, University of MiyazakiMiyazakiJapan

Personalised recommendations