Advertisement

Mammalian Biology

, Volume 80, Issue 1, pp 54–58 | Cite as

Anthropogenic and environmental effects on invasive mammal distribution in northern Patagonia, Argentina

  • Mariela Gisele GantchoffEmail author
  • Jerrold L. Belant
Short Communication

Abstract

Anthropogenic disturbance is an important factor influencing biological invasions. The European hare (Lepus europaeus) and wild boar (Sus scrofa) are invasive species known to cause substantial environmental damage, and were introduced to Argentina during the early 1900s. We compared the relative importance of anthropogenic and environmental factors in hare and boar occurrence in Nahuel Huapi National Park, Argentina, and assessed the hypothesis that invasion can occur regardless of anthropogenic disturbance. Also, we assessed whether hare and boar occupancy offered support for the disturbance hypothesis, which states that invasive species are facilitated by anthropogenic disturbance. We deployed 80 cameras from February to May 2012 and January to April 2013 and at each site measured three environmental (land cover, horizontal cover, and percentage herbaceous vegetation) and three anthropogenic (distance to nearest human settlement, distance to nearest road, and average daily number of people) variables. We used likelihood-based occupancy modeling to estimate site occurrence and detectability. We obtained 480 independent detections of hares and 134 of boars in 1680 camera days. Environmental factors had a greater effect on hare occupancy than anthropogenic disturbances, and hare occupancy was greater in more open areas and closer to human settlements, supporting both hypotheses. Boar occurrence was equally influenced by anthropogenic and environmental factors, and offered mixed support for both hypotheses; boars were present only in humid land covers, and occupancy was lesser closer to settlements but greater closer to roads. Species responses to anthropogenic and environmental factors can vary based on life history traits and role in human society. Identifying the effect of environmental factors and human disturbances on species is fundamental for allocating limited resources in management and conservation.

Keywords

European hare Wild boar Invasive mammal Patagonia Disturbance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asociación Parques Nacionales, 2011. Lineamientos estratégicos para el manejo de especies exóticas en la Administración de Parques Nacionales. Asociación Parques Nacionales, Buenos Aires, Available from (https://doi.org/www.sib.gov.ar/archivos/version_final_Lineamientos.pdf) [30 January 2014].Google Scholar
  2. Arnold, T.W., 2010. Uninformative parameters and model selection using Akaike’s Information Criterion. J. Wild. Manage. 74, 1175–1178.CrossRefGoogle Scholar
  3. Ballari, S.A., Barrios-García, M.N., 2013. A review of wild boar Sus scrofa diet and factors affecting food selection in native and introduced ranges. Mammal Rev. 44, 124–134.CrossRefGoogle Scholar
  4. Bonino, N., Cossíos, D., Menegheti, J., 2010. Dispersal of the European hare, Lepus europaeus, in South America. Folia Zool. 59, 9–15.CrossRefGoogle Scholar
  5. Burnham, K.P., 2004. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304.CrossRefGoogle Scholar
  6. Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multi-Model Inference. Springer Link, Berlin.Google Scholar
  7. Caley, P., 1997. Movement, activity patterns and habitat use of feral pigs (Sus scrofa) in a tropical habitat. Wildl. Res. 24, 77–87.CrossRefGoogle Scholar
  8. Cardarelli, E., Meriggi, A., Brangi, A., Vidus-Rosin, A., 2010. Effects of arboriculture stands on European hare Lepus europaeus spring habitat use in an agricultural area of northern Italy. Acta Theriol. 56, 229–238.CrossRefGoogle Scholar
  9. Crooks, J.A., Chang, A.L., Ruiz, G.M., 2011. Aquatic pollution increases the relative success of invasive species. Biol. Invasions 13, 165–176.CrossRefGoogle Scholar
  10. Desbiez, A., Santos, S., Keuroghlian, A., Bodmer, R., 2009. Niche partitioning among white-lipped peccaries (Tayassu pecari), collared peccaries (Pecari tajacu), and feral pigs (Sus scrofa). J. Mammal. 90, 119–128.CrossRefGoogle Scholar
  11. Dinsmore, S.J., White, G.C., Knopf, F.L., 2002. Advance techniques for modeling avian nest survival. Ecology 83, 3476–3488.CrossRefGoogle Scholar
  12. Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carr, G., Marquéz, J.R.G., Gruber, B., Lafourcade, B., Leitão, P.J., et al., 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46.CrossRefGoogle Scholar
  13. Elton, C., 1958. The ecology of invasions by animals and plants. Chapman and Hall, London.CrossRefGoogle Scholar
  14. Fletcher, R.J., Hutto, R.L., 2008. Partitioning the multi-scale effects of human activity on the occurrence of riparian forest birds. Landsc. Ecol. 23, 727–739.CrossRefGoogle Scholar
  15. Galende, G.I., Grigera, D., 1998. Relaciones alimentarias de Lagidium viscacia (Rodentia, Chinchillidae) con herbívoros introducidos en el parque nacional Nahuel Huapi. Iheringia, Ser. Zool. 84, 3–10.Google Scholar
  16. Gantchoff, M.G., Belant, J.L., Masson, D.A., 2013. Ocurrence of invasive mammals in southern Nahuel Huapi National Park. Stud. Neotrop. Fauna Environ. 48, 175–182.CrossRefGoogle Scholar
  17. Hebblewhite, M., White, C.A., Nietvelt, C.G., McKenzie, J.A., Hurd, T.E., Fryxell, J.M., Bayley, S.E., Paquet, P.C., 2005. Human activity mediates atrophic cascade caused by wolves. Ecology 86, 2135–2144.CrossRefGoogle Scholar
  18. Heinze, G., Shemper, M., 2002. A solution to the problem of separation in logistic regression. Stat. Med. 21, 2409–2419.PubMedCrossRefGoogle Scholar
  19. Hines, J.E., 2006. PRESENCE—software to estimate patch occupancy and related parameters. USGS-PWRC https://doi.org/www.mbr-pwrc.usgs.gov/software/presence.html
  20. Hobbs, R.J., Huenneke, L.F., 1992. Disturbance, diversity, and invasion: implications for conservation. Conserv. Biol. 6, 324–337.CrossRefGoogle Scholar
  21. IUCN Commission on National Parks and Protected Areas, 1982. IUCN Directory of Neotropical Protected Areas. International Union for Conservation of Nature, Gland.Google Scholar
  22. Johnson, P.T.J., Olden, J.D., vander Zanden, M.J., 2008. Dam invaders: impoundments facilitate biological invasions into freshwaters. Front. Ecol. Environ. 6, 357–363.CrossRefGoogle Scholar
  23. Kalwij, J.M., Robertson, M.P., van Rensburg, B.J., 2008. Human activity facilitates altitudinal expansion of exotic plants along a road in montane grassland, South Africa. Appl. Veg. Sci. 11, 491–498.CrossRefGoogle Scholar
  24. Lantschner, M.V., Rusch, V., Hayes, J.P., 2013. Do exotic pine plantations favour the spread of invasive herbivorous mammals in Patagonia? Aust. Ecol. 38, 338–345.CrossRefGoogle Scholar
  25. MacKenzie, D., Bailey, L., 2004. Assessing the fit of site—occupancy models. J. Agric. Biol. Environ. Stat. 9, 300–318.CrossRefGoogle Scholar
  26. MacKenzie, D.I., Nichols, J.D., Lachman, G.B., Droege, S., Andrew Royle, J., Langtimm, C.A., 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.CrossRefGoogle Scholar
  27. MacKenzie, D.I., Nichols, J.D., Royle, J.A., Pollock, K.H., Bailey, L.L., Hines, J.E., 2005. Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Academic Press, Burlington.Google Scholar
  28. Markovchick-Nicholls, L., Regan, H.M., Deutschman, D.H., Widyanata, A., Martin, B., Noreke, L., Hunt, T.A., 2008. Relationships between human disturbance and wildlife land use in urban habitat fragments. Conserv. Biol. 22, 99–109.PubMedCrossRefGoogle Scholar
  29. Merino, M.L., Carpinetti, B.N., Abba, A.M., 2009. Invasive mammals in the national parks system of Argentina. Nat. Area J. 29, 42–49.CrossRefGoogle Scholar
  30. Mermoz, M., Martín, M., 1987. Mapa de vegetación del parque y reserva nacional Nahuel Huapi. Administración de Parques Nacionales, Buenos Aires.Google Scholar
  31. Marini, L., Lindelöw, Å., Jönsson, A.M., Wulff, S., Schroeder, L.M., 2013. Population dynamics of the spruce bark beetle: a long-term study. Oikos 122, 1768–1776.CrossRefGoogle Scholar
  32. Meyerson, L., Mooney, H., 2007. Invasive alien species in an era of globalization. Front. Ecol. Environ. 5, 199–208.CrossRefGoogle Scholar
  33. Novillo, A., Ojeda, R., 2008. The exotic mammals of Argentina. Biol. Invasions 10, 1333–1344.CrossRefGoogle Scholar
  34. Nunez, M., Pauchard, A., 2010. Biological invasions in developing and developed countries: does one model fit all? Biol. Invasions 12, 707–714.CrossRefGoogle Scholar
  35. Ordiz, A., Støen, O., Langebro, L., 2009. A practical method for measuring horizontal cover. Ursus 20, 109–113.CrossRefGoogle Scholar
  36. Ohashi, H., Saito, M., Horie, R., Tsunoda, H., Noba, H., Ishii, H., Kuwabara, T., Hiroshige, Y., Koike, S., Hoshino, Y., Toda, H., Kaji, K., 2012. Differences in the activity pattern of the wild boar Sus scrofa related to human disturbance. Eur. J. Wildl. Res. 59, 167–177.CrossRefGoogle Scholar
  37. Pescador, M., Sanguinetti, J., Pastore, H., Peris, S., 2009. Expansion of the introduced wild boar (Sus scrofa) in the Andean region, Argentinean Patagonia. Galemys 21, 121–132.Google Scholar
  38. Pysek, P., Richardson, D., 2010. Invasive species, environmental change and management, and health. Annu. Rev. Environ. Resour. 35, 25–55.CrossRefGoogle Scholar
  39. Schiaffini, M.I., Vila, A.R., 2012. Habitat use of the wild boar, Sus scrofa Linnaeus 1758, in Los Alerces National Park, Argentina. Stud. Neotrop. Fauna Environ. 47, 11–17.CrossRefGoogle Scholar
  40. Somlo, R., Bonvissuto, G., Sbriller, A., Bonino, N., Moricz, E., 1994. La influencia de la condición del pastizal sobre la dieta estacional de los herbívoros y el pastoreo múltiple, en sierras y mesetas occidentales de Patagonia. Rev. Argic. Prod. Anim. 14, 187–207.Google Scholar
  41. Steen, D.a., McClure, C.J.W., Brock, J.C., Craig Rudolph, D., Pierce, J.B., Lee, J.R., Jeffrey Humphries, W., Gregory, B.B., Sutton, W.B., Smith, L.L., Baxley, D.L., Stevenson, D.J., Guyer, C., 2014. Snake co-occurrence patterns are best explained by habitat and hypothesized effects of interspecific interactions. J. Anim. Ecol. 83, 286–295.PubMedCrossRefGoogle Scholar
  42. Tabarelli, M., Aguiar, A.V., Ribeiro, M.C., Metzger, J.P., Peres, C.A., 2010. Prospects for biodiversity conservation in the Atlantic Forest: lessons from aging human-modified landscapes. Biol. Conserv. 143, 2328–2340.CrossRefGoogle Scholar
  43. Tolon, V., Dray, S., Loison, A., Zeileis, A., Fischer, C., Baubet, C., 2009. Responding to spatial and temporal variations inpredation risk: space use of a game species in a changing landscape of fear. Can. J. Zool. 87, 1129–1137.CrossRefGoogle Scholar
  44. Vanthomme, H., Kolowski, J., Korte, L., Alonso, A., 2013. Distribution of a community of mammals in relation to roads and other human disturbances in Gabon, Central Africa. Conserv. Biol. 27, 281–291.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Vazquez, D.P., 2002. Multiple effects of introduced mammalian herbivores in a temperate forest. Biol. Invasions 4, 175–191.CrossRefGoogle Scholar
  46. Veblen, T.T., Mermoz, M., Martin, C., Kitzberger, T., 1992. Ecological impacts of introduced animals in Nahuel Huapi National Park, Argentina. Conserv. Biol. 6, 71–83.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2014

Authors and Affiliations

  1. 1.Carnivore Ecology Laboratory, Forest and Wildlife Research CenterMississippi State UniversityUSA

Personalised recommendations