Mammalian Biology

, Volume 79, Issue 4, pp 247–253 | Cite as

Phylogeography and genetic diversity of the red squirrel (Sciurus vulgaris) in China: Implications for the species’ postglacial expansion history

  • Zhu Liu
  • Bo Li
  • Jianzhang MaEmail author
  • Dong Zheng
  • Yanchun Xu
Original Investigation


The geographical distribution of Sciurus vulgaris spans much of the Palearctic from western Europe and the UK eastward to the pacific coast of East Asia. S. vulgaris occurs in China only in the far northwest and the northeast. Understanding of the species’ postglacial expansion history in East Asia has been limited by the paucity of molecular data. In this study, we used partial D-loop and cytochrome b gene sequences to assess mitochondrial DNA variation in S. vulgaris in China. Our objectives were to (1) determine phylo-geographical patterns of S. vulgaris in China; (2) understand the species’ postglacial expansion history in this region; and (3) quantify genetic diversity levels within S. vulgaris populations in China. We identified a supported phylogenetic group in S. vulgaris from China, and found no tendency for haplotypes to cluster by geographic region. Our analysis of S. vulgaris from China and other regions supports the hypothesis that the Calabria region of southern Italy is a glacial refugium for the species. We tentatively propose a postglacial expansion pattern for the squirrels: migrating from Calabria via Central and Eastern Europe to Russia and from there to China, and firstly to the northwest and then to northeast in China. We found high levels of genetic diversity in S. vulgaris populations across China as a whole, and discussed its influential factors.


Sciurus vulgaris Phylogeography Genetic diversity D-loop Cytochrome b gene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barratt, E.M., Gurnell, J., Malarky, G., Deaville, R., Bruford, W., 1999. Genetic structure of fragmented populations of red squirrel (Sciurus vulgaris) in the UK, Mol. Ecol. 8, 55–93.CrossRefGoogle Scholar
  2. Cui, Z.J., Chen, Y.X., Zhang, W., Zhou, S.Z., Zhou, LP., Zhang, M., Li, C.C., 2011. Research history, glacial chronology and origins of Quaternary glaciations in China, Quaternary Sci. 31 (5), 749–764 (in Chinese with English summary).Google Scholar
  3. Davison, A., Birks, J.D.S., Brookes, R.C., Messenger, J.E., Griffiths, H.I., 2001. Mitochondrial phylogeography and population history of pine martens Martes martes compared with polecats Mustelaputorius. Mol, Ecol. 10, 2479–2488.Google Scholar
  4. Deng, T., Xue, X.X., 1997. An existing countermeasure of mammals in glacian periods—a new explanation to the Bergmann’s law, Acta Theriol. Sin. 17 (4), 259–265 (in Chinese with English summary).Google Scholar
  5. Dobson, M., 1994. Patterns of distribution in Japanese land mammals, Mam. Rev. 24, 91–111.CrossRefGoogle Scholar
  6. Dozières, A., Chapuis, J.L., Thibault, S., Baudry, E., 2012. Genetic structure of the French red squirrel populations: implication for conservation. PLoS ONE 7 (10), e47607, Scholar
  7. Finnegan, L.A., Edwards, C.J., Rochford, J.M., 2008. Origin of, and conservation units in, the Irish red squirrel (Sciurus vulgaris) population, Conserv. Genet. 9, 1099– 1110.CrossRefGoogle Scholar
  8. Fu, Y.X., 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection, Genetics 147, 915–925.PubMedPubMedCentralGoogle Scholar
  9. Grill, A., Amori, G., Aloise, G., Lisi, I., Tosi, G., Wauters, LA., Randi, E., 2009. Molecular phylogeography of European Sciurus vulgaris: refuge within refugia? Mol, Ecol. 18, 2687–2699.Google Scholar
  10. Guindon, S., Gascuel, O., 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood, Syst. Biol. 52, 696–704.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Hale, M.L, Lurz, P.W.W., Wolff, K., 2004. Patterns of genetic diversity in the red squirrel (Sciurus vulgaris L): footprints of biogeographic history and artificial introductions, Conserv. Genet. 5, 167–179.CrossRefGoogle Scholar
  12. Hewitt, G.M., 1999. Post-glacial re-colonization of European biota, Biol. J. Linn. Soc. 68, 87–112.CrossRefGoogle Scholar
  13. Hewitt, G., 2000. The genetic legacy of the Quaternary ice ages, Nature 405, 907–913.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Hewitt, G.M., 2011. Quaternary phylogeography: the roots of hybrid zones, Genetica 139, 617–638.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Huelsenbeck, J.P., Hillis, D.M., 1993. Success of phylogenetic methods in the four taxon case, Syst. Biol. 42, 247–264.CrossRefGoogle Scholar
  16. Ishida, K., Sato, J.J., Kinoshita, G., Hosoda, T., Kryukov, A.P., Suzuki, H., 2013. Evolutionary history of the sable (Martes zibellina brachyura) on Kokkaido inferred from mitochondrial Cytb and nuclear Mc 1r and Tcf25 gene sequences, Acta Theriol. 58, 13–24.CrossRefGoogle Scholar
  17. Kawamura, Y., 1988. Quaternary rodent faunas in the Japanese Islands (Part 1), Mem. Fac. Sci. Kyoto Univ. Ser. Geol. Min. 53, 31–384.Google Scholar
  18. Kawamura, Y., Kamei, T., Taruno, H., 1989. Middle and late Pleistocene mammalian faunas in Japan, Quat. Res. 28, 317–326 (in Japanese with English summary).CrossRefGoogle Scholar
  19. Kon, H.S., Zhang, M.H., Wang, J.X., Shn, D.S., Lee, B.G., 2006. Mitochondrial DNA variation in the red squirrel (Sciurus vulgaris mantchuricus) from Korea and Northeast China, Acta Theriol. Sin. 26 (1), 1–7.Google Scholar
  20. Leache, A.D., Reeder, T.W., 2002. Molecular systematics of the eastern fence lizard (Sceloporus undulatus): a comparison of parsimony, likelihood, and Bayesian approaches, Syst. Biol. 51, 44–68.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Li, B., Malyarchuk, B., Ma, Z.P., Derenko, M., Zhao, J.P., Zhou, X.L., 2013. Phylogeography of sable (Martes zibellina L, 1758) in the southeast portion of its range based on mitochondrial DNA variation: highlighting the evolutionary history of the sable. Acta Theriol. 58, 139–148.Google Scholar
  22. Li, J.S., Ma, J.Z., Song, Y.L., Bai, S.Y., 2002. Genetic diversity of two red squirrel populations between Daxing’an Mountain and Xiaoxing’an Mountain by RAPD analysis, J. Northeast Forestry Univ. 30 (2), 57–61 (in Chinese with English summary).Google Scholar
  23. Librado, P., Rozas, J., 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphismdata, Bioinformatics 25, 1451–1452.CrossRefGoogle Scholar
  24. Liu, Z.G., Ji, L.Z., Zhu, J.J., 2005. Impact of cone-picking on seed banks and animals, J. Graduate School Chin. Acad. Sci. 22 (5), 596–603 (in Chinese with English summary).Google Scholar
  25. Lu, C.H., 2003. Review on the study of relationship between natural regeneration of Korean pine and animals, Chin. J. Ecol. 22(1), 49–53 (in Chinese with English summary).Google Scholar
  26. Lurz, P.W.W., Gurnell, J., Magris, L., 2005. Sciurus vulgaris, Mammalia 769, 1–10.Google Scholar
  27. Ma, Y., Sun, C.S., 1979. Red squirrel (Sciurus vulgaris exalbidus) from Tianshan mountains, Xinjiang, Acta Zool. Sin. 25 (2), 189–190 (in Chinese).Google Scholar
  28. Mercer, J.M., Roth, V.L., 2003. The effects of Cenozoic global change on squirrel phylogeny, Science 299, 1568–1572.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Nylander, J.A.A., 2004. Mr Modeltest 2.3. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.Google Scholar
  30. Ogden, R., Shuttleworth, C, McEwing, R., Cesarini, S., 2005. Genetic management of the red squirrel, Sciurus vulgaris: a practical approach to regional conservation, Conserv. Genet. 6, 511–525.CrossRefGoogle Scholar
  31. Oshida, T., Masuda, R., Yoshida, M.C., 1996. Phylogenetic relationships among Japanese species of the family Sciuridae (Mammalia, Rodentia), inferred from nucleotide sequences of mitochondrial 12s ribosomal RNA genes, Zool. Sci. 13, 615–620.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Oshida, T., Arslan, A., Noda, M., 2009. Phylogenetic relationships among the Old World Sciurus squirrels, Folia Zool. 58 (1), 14–25.Google Scholar
  33. Posada, D., Buckley, T.R., 2004. Model selection and model averaging in phylogenet-ics: advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests, Syst. Biol. 53, 793–808.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Posada, D., Crandall, K.A., 1998. Modeltest: testing the model of DNA substitution, Bioinformatics 14, 817–818.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Rogers, A.R., Harpending, H., 1992. Population growth makes waves in the distribution of pairwise genetic differences, Mol. Biol. Evol. 9, 552–569.PubMedPubMedCentralGoogle Scholar
  36. Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models, Bioinformatics 19, 1572–1574.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Rozhnov, V.V., Meschersky, I.G., Pishchulina, S.L., Simakin, L.V., 2010. Genetic analysis of sable (Martes zibellina) and pine marten (M, martes) populations in sympatric part of distribution area in the northern Urals. Russ. J. Genet. 4, 488–492.CrossRefGoogle Scholar
  38. Ruiz-Gonzalez, A., (PhD Thesis) 2011. Phylogeography and non-invasive landscape genetics of the European pine marten (Martes martes L. 1758): insights into ancient and contemporary processes shaping genetic variation. Universidad del Pais Vasco, Vitoria-Gasteiz.Google Scholar
  39. Sidorowicz, J., 1971. Problems of subspecific taxonomy of squirrel (Sciurus vulgaris L.) inthe Palaearctic, Zool. Anz. 187, 123–142.Google Scholar
  40. Slatkin, M., Hudson, R.R., 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations, Genetics 129, 555–562.PubMedPubMedCentralGoogle Scholar
  41. Smith, A.T., Xie, Y., 2008. A Guide to the Mammals of China. Princeton University Press, Princeton/Oxford, p. 544.Google Scholar
  42. Soltis, D.E., Morris, A.B., McLachlan, J.S., Nanos, P.S., Soltis, P.S., 2006. Comparative phylogeography of unglaciated eastern North America, Mol. Ecol. 15, 4261–4293.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Swofford, D.L., 2002. PAUP*: Phylogenetic Analysis using Parsimony (* and Other Methods), Version 4. Sinauer Associates, Sunderland, MA.Google Scholar
  44. Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism, Genetics 123, 585–595.PubMedPubMedCentralGoogle Scholar
  45. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol. 28, 2731–2739.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Tamura, N., Hayashi, F., 2007. Five-year study of the genetic structure and demography of two subpopulations of the Japanese squirrel (Sciurus lis) in a continuous forest and an isolated woodlot, Ecol. Res. 22, 261–267.CrossRefGoogle Scholar
  47. Trizio, I., Crestanello, B., Galbusera, P., Wauters, L.A., Tosi, G., Matthysen, E., Hauffe, H.C., 2005. Geographical distance and physical barriers shape the genetic structure of Eurasian red squirrels (Sciurus vulgaris) in the Italian Alps, Mol. Ecol. 14, 469–481.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Vila, C, Amorim, I.R., Leonard, J.A., Posada, D., Castroviejo, J., Petrucci-Fonseca, F., Crandall, K.A., Ellegren, H., Wayne, R.K., 1999. Mitochondrial DNA phylogeography and population history of the grey wolf Canis lupus. Mol, Ecol. 8, 2089–2103.Google Scholar
  49. Walker, C.W., Vila, C, Landa, A., Linden, M., Ellegren, H., 2001. Genetic variation and population structure in Scandinavian wolverine (Gulo gulo) populations, Mol. Ecol. 10, 53–63.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Weiss, S., Ferrand, N., 2007. Current perspectives in phylogeography and the significance of South European refugia in the creation and maintenance of European biodiversity. In: Weiss, S., Ferrand, N. (Eds.), Phylogeography of Southern European Refugia., pp. 341–357.Google Scholar
  51. Wilson, D.E., Reeder, D.M., 2005. Mammal Species of the World: A Taxonomic and Geographic Reference. The Johns Hopkins University Press, Baltimore.Google Scholar
  52. Zhao, J.D., Wang, J., Yin, X.F., 2013. Quaternary glaciations research in China: current status and controversy, J. Glaciol. Geocryol. 35 (1), 119–125 (in Chinese with English summary).Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2014

Authors and Affiliations

  • Zhu Liu
    • 1
    • 2
  • Bo Li
    • 1
    • 3
  • Jianzhang Ma
    • 1
    Email author
  • Dong Zheng
    • 1
  • Yanchun Xu
    • 1
    • 3
  1. 1.College of Wildlife ResourcesNortheast Forestry UniversityHarbinChina
  2. 2.College of Life Sciences and TechnologyMudanjiang Normal UniversityMudanjiangChina
  3. 3.State Forestry Administration Detecting Center of WildlifeHarbinChina

Personalised recommendations