Advertisement

Mammalian Biology

, Volume 79, Issue 3, pp 215–220 | Cite as

Seasonal changes in the concentrations of plant secondary metabolites and their effects on food selection by Microtus oeconomus

  • Xin Dai
  • Mei Han
  • Qian Liu
  • Guozhen Shang
  • Baofa Yin
  • Aiqin Wang
  • Biggins E. Dean
  • Wanhong Wei
  • Shengmei YangEmail author
Original Investigation

Abstract

Using cafeteria trials conducted during June–September 2008 in Qinghai Province, China, we investigated the selection of 20 plant species by root voles (Microtus oeconomus). It was found that both favored and edible plant groups of root voles comprised 6 species, while the remaining 8 species were anorectic plants. Three plant secondary metabolites (PSMs): flavonoids, condensed tannins, and total phenols, exhibited seasonal changes in concentration; being lowest at June and gradually increasing from July to August/September. Total phenols was the only factor included in the best model of generalized linear models, indicating that total phenols was the most important factor deterring food selection by root voles. In contrast, tannins had a weak effect on food selection by root voles. This study indicated that PSMs play an important role in food selection by root voles; however, the effects of PSMs depend on the type of PSMs. Furthermore, this finding partly verifies the hypothesis that PSMs contribute to the defense strategy of plants, significantly influencing plant selection by root voles.

Keywords

Microtus oeconomus Flavonoids Condensed tannins Total phenols Food selection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Austin, P.J., Suchar, L.A., Robbins, C.T., Hagerman, A.E., 1989. Tannin-binding proteins in saliva of deer and their absence in saliva of sheep and cattle. J. Chem. Ecol. 15, 1335–1347.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ball, J.P., Dahlgren, J., 2002. Browsing damage on pine (Pinus sylvestris and P. con-torta) by a migrating moose (Alcesalces) population in winter: relation to habitat composition and road barriers. Scand. J. Forest Res. 17, 427–435.CrossRefGoogle Scholar
  3. Batzli, G.O., 1985. Nutrition, in biology of new world Microtus. Am. Soc. Mammal. 8, 779–811 (special publication).Google Scholar
  4. Batzli, G.O., Jung, H.G., 1980. Nutritional ecology of microtine rodents: resource utilization near Atkasook, Alaska. Arct. Alp. Res. 12, 483–499.CrossRefGoogle Scholar
  5. Bee, J.N., Tanentzap, A.J., Lee, W.G., Lavers, R.B., Mark, A.F., Mills, J.A., Coomes, D.A., 2011. Influence offoliartraits on forage selection by introduced red deer in New Zealand. Basic Appl. Ecol. 12, 56–63.CrossRefGoogle Scholar
  6. Benett, R.C., Wallsgrove, R.M., 1994. Tansley Review No 72. Secondary metabolites in plant defence mechanisms. New Phytol. 127, 617–633.Google Scholar
  7. Berg, T.B., 2003. Catechin content and consumption ratio of the collared lemming. Oecologia 135, 242–249.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Black, J.L., 1990. Nutrition of the grazing ruminant. Proc. N. Z. Soc. Anim. Prod. 50, 7–27.Google Scholar
  9. Borchard, F., Berger, H.J., Bunzel-Drükec, M., Fartmannd, T., 2011. Diversity of plant-animal interactions: possibilities for a new plant defense indicator value? Ecol. Indic. 11, 1311–1318.CrossRefGoogle Scholar
  10. Bryant, J.P., Wieland, G.D., Reichardt, P.B., Lewis, V.E., McCarthy, M.C., 1983. Pinosylvin methyl-ether deters snowshoe hare feeding on green alder. Science 222, 1023–1025.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd edition. Springer, New York.Google Scholar
  12. Caldwell, M.M., 1977. The effects of solar UV-B radiation (280-315 nm) on higher plants: implications of stratospheric ozone reduction. In: Caseellan, A. (Ed.), Research in Photobiology. Plenum Press, New York, p. 335.Google Scholar
  13. Clauss, M., Lason, K., Gehrke, J., Lechner-Doll, M., Fickel, J., Grune, T., Jürgen Streich, W., 2003. Captive roe deer (Capreolus capreolus) select for low amounts of tannic acid but not quebracho: fluctuation of preferences and potential benefits. Comp. Biochem. Phys. B 136, 369–382.CrossRefGoogle Scholar
  14. Cui, Q.H., Jiang, Z.G., Lian, X.M., Zhang, T.Z., Su, J.P., 2005. Factors influencing habitat selection of root voles (Microtus oeconomus). Acta Theriol. Sin. 25, 45–51.Google Scholar
  15. Dai, X., Zou, Z.Z., Zhang, T.T., Jiang, W., Wei, W.H., Yang, S.M., 2011. The effect of tannic acid on the gonad hormones in plateau pikas (Ochotona curzoniae) and root voles (Microtus oeconomus). Acta Theriol. Sin. 31, 278–283.Google Scholar
  16. Dearing, M.D., Foley, W.J., McLean, S., 2005. The influence of plant secondary metabolites on the nutritional ecology of herbivorous terrestrial vertebrates. Annu. Rev. Ecol. Evol. Syst. 36, 169–189.CrossRefGoogle Scholar
  17. Degabriel, J.L, Moore, B.D., Foley, W.J., Johnson, C.N., 2009. The effects of plant defensive chemistry on nutrient availability predict reproductive success in a mammal. Ecology 90, 711–719.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Dixon, R.A., Paiva, N.L., 1995. Stress-induced phenylpropanoid metabolism. Plant Cell 7, 1085–1097.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Ebel, J., Hahlbrock, K., 1982. In: Harbome, J.B., Mabry, T.J. (Eds.), The Flavonoids: Advances in Research. Chapman and Hall, London, pp. 641–679.Google Scholar
  20. Ettle, T., Mentschel, K., Roth, F.X., 2004. Dietary self-selection for organic acids by the piglet. Arch. Anim. Nutr. 58, 379–388.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Feeny, P., 1976. Plant apparency and chemical defense. In: Wallace, J.W., Nansel, R.L. (Eds.), Biological Interactions Between Plants and Insects. Recent Advances in Phytochemistry, vol. 10. Plenum Press, New York, USA, pp. 1–40.Google Scholar
  22. Feeny, P.P., 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51, 565–581.CrossRefGoogle Scholar
  23. Fickel, J., Pitra, C, Joest, B.A., Hofmann, R.R., 1999. A novel method to evaluate the relative tannin-binding capacities of salivary proteins. Comp. Biochem. Physiol. 122, 225–229.Google Scholar
  24. Freeland, W.J., Janzen, D.H., 1974. Strategies in herbivory by mammals: the role of plant secondary compounds. Am. Nat. 108, 269–289.CrossRefGoogle Scholar
  25. Hagerman, A.E., Robbins, C.T., Willson, T.C., 1992. annin chemistry in relation to digestion. J. Range Manage. 45, 57–62.CrossRefGoogle Scholar
  26. Hagerman, A.E., Robbins, C.T., 1993. Specificity of tannin-binding salivary proteins relative to diet selection by mammals. Can. J. Zool. 71, 628–633.CrossRefGoogle Scholar
  27. Hjältén, J., Palo, T., 1992. Selection of deciduous trees by free ranging voles and hares in relation to plant chemistry. Oikos, 477–484.Google Scholar
  28. Iason, G., 2005. The role of plant secondary metabolites in mammalian herbivory: ecological perspectives. Proc. Nutr. Soc. 64, 123–131.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Iason, G.R., Hester, A.J., 1993. The response of heather (Calluna vulgaris) to shade and nutrients predictions ofthe carbon nutrient balance hypothesis. J. Ecol. 81, 75–80.CrossRefGoogle Scholar
  30. Iason, G.R., Villalba, J.J., 2006. Behavioral strategies of mammal herbivores against plant secondary metabolites: the avoidance-tolerance continuum. J. Chem. Ecol. 32, 1115–1132.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Juntheikki, M.R., Riitta, J.T., Hagermans, A.E., 1996. Salivary tannin-binding proteins in root vole (Microtus oeconomus Pallas). Biochem. Syst. Ecol. 24, 25–35.CrossRefGoogle Scholar
  32. Koricheva, J., Barton, K.E., 2012. Temporal changes in plant secondary metabolite production: patterns causes and consequences. In: Iason, G.R., Dicke, M., Hartley, S.E. (Eds.), The Ecology of Plant Secondary Metabolites: From Genes to Global Processes. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  33. Laitinen, M.L., Julkunen-Tiitto, R., Yamaji, K., Heinonen, J., Rousi, M., 2004. Variation in birch bark secondary chemistry between and within clones: implications for herbivory by hares. Oikos 104, 316–326.CrossRefGoogle Scholar
  34. Lawler, I.R., Stapley, J., Foley, W.J., Eschler, B.M., 1999. Ecological example of conditioned flavor aversion in plant-herbivore interactions: effect of terpenes of Eucalyptus leaves on feeding by common ringtail and brushtail possums. J. Chem. Ecol. 25, 401–415.CrossRefGoogle Scholar
  35. Li, J.N., Liu, J.K., Tao, S.L., 2003. Effects of tannic acid on the food intake and protein digestibility of root voles. Acta Theriol. Sin. 23, 52–57.Google Scholar
  36. Lindroth, G.R., 1991. Mammalian herbivore-plant interactions. In: Aehamson, W.C. (Ed.), Plant-Animal Interactions. McGraw-Hill, New York, pp. 163–206.Google Scholar
  37. Liu, J.K., Liang, J.R., Zhou, X.M., Li, J.H., 1982. Communities and quantity of rodents in alpine meadow ecosystem. In: Xia, W.P. (Ed.), Alpine Meadow Ecosystem, Fasc. 1. Gansu People’s Publishing House, Lanzhou, pp. 24–43.Google Scholar
  38. Liu, J.K., Wang, X., Liu, W., 1991. Studies on the nutritional ecology of small herbivorous mammals: 1. Patterns of food selection and resource utilization for root vole and Gansu pikas. In: Liu, J.K., Wang, Z.W. (Eds.), Alpine Meadow Ecosystem, Fasc.3. Science Press, Beijing, pp. 111–123.Google Scholar
  39. Makkar, H.P.S., Bluemmei, M., Borowy, N.K., 1993. Gravimetric determination oftan-nins and their correlation with chemical and protein precipitation methods. J. Sci. Food Agric. 61, 161–165.CrossRefGoogle Scholar
  40. Marsh, K., Wallis, I., Foley, W., 2007. Behavioural contributions to the regulated intake of plant secondary metabolites in koalas. Oecologia 154, 283–290.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Marsh, K.J., Foley, W.J., Cowling, A., Wallis, I.R., 2003. Differential susceptibility to Eucalyptus secondary compounds explains feeding by the common ringtail (Pseudocheirus peregrinus) and common brushtail possum (Thichosurus vulpec-ula). J. Comp. Physiol. B 173, 69–78.PubMedPubMedCentralGoogle Scholar
  42. Mehansho, H., Butler, L.G., Carlson, D.M., 1987. Dietary tannins and salivary prolinerich proteins: interactions, induction and defense mechanisms. Annu. Rev. Nutr. 7, 423–440.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Moore, B.D., Foley, W.J., Wallis, I.R., Cowling, A., Handasyde, K.A., 2005. A simple understanding of complex chemistry explains feeding preferences of koalas. Biol. Lett. 1, 64–67.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Nie, H.Y., Liu, J.K., Su, J.P., 1995. Field experiment studies on the multifactorial hypothesis of population system regulation for small rodents: the effect pattern of food availability and predation on spacing behavior of root voles and the function of spacing behavior in population regulation. Acta Theriol. Sin. 15, 41–52.Google Scholar
  45. Niemelä, P., Danell, K., 1988. Comparison of moose browsing on Scotspine (Pinus sylvestris) and lodgepole pine (Pinus contorta).J. Appl. Ecol. 25, 761–775.CrossRefGoogle Scholar
  46. Porter, L.J., Hrstich, L.N., Chan, B.G., 1985. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25, 223–230.CrossRefGoogle Scholar
  47. Raymond, V., Barbehenn, C, Peter, C, 2011. Tannins in plant-herbivore interactions. Phytochemistry 72, 1551–1565.CrossRefGoogle Scholar
  48. Rhoades, D.F., Cates, R.G., 1976. Toward a general theory of plant antiherbivore chemistry. In: Wallace, J.W., Nansel, R.L. (Eds.), Biological Interactions Between Plants and Insects. Recent Advances in Phytochemistry, vol. 10. Plenum Press, New York, USA, pp. 169–213.Google Scholar
  49. Robbins, C.T., Hagerman, A.E., Austin, P.J., 1991. Variation in mammalian physiological responses to a condensed tannin and its ecological implications. J. Mammal. 72, 480–486.CrossRefGoogle Scholar
  50. Robbins, C.T., Mole, S., Hagerman, A.E., Hanley, T.A., 1987. Role of tannins in defending plants against ruminants: reduction in dry matter digestion? Ecology 68, 1606–1615.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Rozema, J., Chardonnents, A., Tosserams, M., Hafkenscheid, R., Bruijnzeel, S., 1997. Leaf thickness and UV-B absorbing pigments of plants in relation to an elevational gradient along the Blue Mountains, Jamaica. Plant Ecol. 128, 151–159.CrossRefGoogle Scholar
  52. Ruechmann, S., Leser, C, Bannert, M., Treutter, D., 2002. Relationship between growth, secondary metabolism, and resistance of apple. Plant Biol. 4, 137–143.CrossRefGoogle Scholar
  53. Schreiber, L.A., Swihar, R.K., 2009. Selective feeding of pine voles on roots of tree seedlings. Can. J. Zool. 87, 183–187.CrossRefGoogle Scholar
  54. Scott, L.L., Provenza, F.D., 1999. Variation in food selection among lambs: effects of basal diet and foods offered in a meal. J. Anim. Sci. 77, 2391–2397.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Sorensen, J.S., McLister, J.D., Dearing, M.D., 2005. Novel plant secondary metabolites impact dietary specialists more than generalists (Neotoma spp.). Ecology 86, 140–154.CrossRefGoogle Scholar
  56. Stolter, C., Ball, J.P., Julkunen-Tiitto, R., 2013. Seasonal differences in the relative importance of specific phenolics and twig morphology result in contrasting patterns of foraging by ageneralist herbivore. Can. J. Zool. 91, 338–347.CrossRefGoogle Scholar
  57. Stolter, C., Ball, J.P., Niemelä, P., Julkunen-Tiitto, R., 2010. Herbivores and variation in the composition of specific phenolics of boreal coniferous trees: a search for patterns. Chemoecology 20, 229–242.CrossRefGoogle Scholar
  58. Stolter, C., Ball, J.P., Julkunen-Tiitto, R., Lieberei, R., Ganzhorn, J.U., 2005. Winter browsing of moose on two different willow species: food selection in relation to plant chemistry and plant response. Can. J. Zool. 83, 807–819.CrossRefGoogle Scholar
  59. Stolter, C., Niemelä, P., Ball, J.P., Julkunen-Tiitto, R., Vanhatalo, A., Danell, K., Varvikko, T., Ganzhorn, J.U., 2009. Comparison of plant secondary metabolites and digestibility of three different boreal coniferous trees. Basic Appl. Ecol. 10, 19–26.CrossRefGoogle Scholar
  60. Sunnerheim-Sjöberg, K., Hämäläinen, M., 1992. Multivariate study of moose browsing in relation to phenol pattern in pine needles. J. Chem. Ecol. 18, 659–672.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Swain, T., 1979. Tannins and lignins. In: Rosenthal, G.A., Janzen, D.H. (Eds.), Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York, pp. 657–682.Google Scholar
  62. Tast, J., 1974. The food and feeding habits of the root vole, Microtus oeconomus, in Finnish Lapland. Aquilo Ser. Zool. 15, 25–32.Google Scholar
  63. Torregrossa, A.M., Dearing, M.D., 2009. Nutritional toxicology of mammals: regulated intake of plant secondary compounds. Funct. Ecol. 23, 48–56.CrossRefGoogle Scholar
  64. Treutter, D., 2001. Biosynthesis of phenolic compounds and its regulation in apple. Plant Growth Regul. 34, 71–89.CrossRefGoogle Scholar
  65. Utsumia, S.A., Cibilsa, A.F., Estellb, R.E., Soto-Navarroa, S.A., Leeuwenc, D.V., 2009. Seasonal changes in one seed juniper intake by sheep and goats in relation to dietary protein and plant secondary metabolites. Small Rumin. Res. 81, 152–162.CrossRefGoogle Scholar
  66. Verheyden-Tixier, H., Duncan, P., 2000. Selection for small amounts of hydrolysable tannins by a concentrate-selecting mammalian herbivore. J. Chem. Ecol. 26, 351–358.CrossRefGoogle Scholar
  67. Villalba, J.J., Provenza, F.D., Bryant, J.P., 2002. Consequences of the interaction between nutrients and plant secondary metabolites on herbivore selectivity: benefits or detriments for plants? Oikos 97, 282–292.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2014

Authors and Affiliations

  • Xin Dai
    • 1
  • Mei Han
    • 1
  • Qian Liu
    • 1
  • Guozhen Shang
    • 1
  • Baofa Yin
    • 1
  • Aiqin Wang
    • 1
  • Biggins E. Dean
    • 2
  • Wanhong Wei
    • 1
  • Shengmei Yang
    • 1
    Email author
  1. 1.College of Bioscience and BiotechnologyYangzhou UniversityJiangsuPR China
  2. 2.U.S. Geological Survey, Fort Collins Science CenterFort CollinsUnited States

Personalised recommendations