Advertisement

Mammalian Biology

, Volume 79, Issue 4, pp 283–286 | Cite as

The polyphyly of Neotragus — Results from genetic and morphometric analyses

  • Eva V. BärmannEmail author
  • Tim Schikora
Short Communication

Abstract

Dwarf antelope species were commonly united in the tribe “Neotragini” (Bovidae, Mammalia) due to their general morphological appearance. However, phylogenetic analyses have shown that not all dwarf antelopes are closely related, so it was suggested to restrict the name Neotragini to the type genus Neotragus. In our study we use mitochondrial cytochrome b sequences and linear skull measurements to further investigate the similarity of all three Neotragus species. Our analyses support the close relationship of N. moschatus and N. batesi. However, N. pygmaeus - the type species, which was never before included in phylogenetic analyses - is not closely related. It might share a most recent common ancestor with another “dwarf antelope”, the Klipspringer Oreotragus oreotragus, and the duikers in the taxon Cephalophini. Hence, we suggest resurrecting the genus Nesotragus von Dueben, 1846 for Nesotragus moschatus and N. batesi.

Keywords

Neotragus Cytochrome b Principal component analysis Discriminant analysis Skull morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ansell, W.F.H., 1972. Part 2:15 Family Artiodactyla. In: Meester, J., Setzer, H.W.(Eds.), The Mammals of Africa: An Identification Manual. Smithsonian Institution Press, Washington, DC, pp. 1–84.Google Scholar
  2. Arnason, U., Gullberg, A., 1996. Cytochrome b nucleotide sequences and the identification of five primary lineages of extant cetaceans, Mol. Biol. Evol. 13, 407–417.CrossRefGoogle Scholar
  3. Bärmann, E.V., Rössner, G.E., Wörheide, G., 2013a. A revised phylogeny of Antilopini (Bovidae, Artiodactyla) using combined mitochondrial and nuclear genes. Mol. Phylogenet. Evol. 67, 484–493.CrossRefGoogle Scholar
  4. Bärmann, E.V., Wronski, T., Lerp, H., Azanza, B., Erpenbeck, D., Rössner, G.E., Wörheide, G., 2013b. A morphometric and genetic framework for the genus Gazella de Blainville 1816 with special focus on Arabian and Levantine Mountain gazelles. Zool. J. Linn. Soc, http://dx.doi.org/10.1111/zoj.12066.Google Scholar
  5. Birungi, J., Roy, M.S., Arctander, P., 1998. DMSO-preserved samples as a source of mRNA for RT-PCR, Mol. Ecol. 7, 1429–1430.CrossRefGoogle Scholar
  6. Gentry, A.W., 1992. The subfamilies and tribes of the family Bovidae, Mamm. Rev. 22 (1), 1–32.CrossRefGoogle Scholar
  7. Groves, C.P., Grubb, P., 2011. Ungulate Taxonomy. Johns Hopkins University Press, Baltimore.Google Scholar
  8. Haltenorth, T., 1963. Klassifikation der Säugetiere, 18. Ordnung Paarhufer Artiodactyla. Handbuch der Zoologie Band VIII: Mammalia. de Gruyter, München, pp. 1–167.Google Scholar
  9. Hassanin, A., Douzery, E.J.P., 1999. The tribal radiation of the family Bovidae (Artiodactyla) and the evolution of the mitochondrial cytochrome b gene, Mol. Phylogenet. Evol. 13 (2), 227–243.CrossRefGoogle Scholar
  10. Hassanin, A., Ropiquet, A., Couloux, A., Cruaud, C, 2009. Evolution of the mitochondrial genome in mammals living at high altitude: new insights from a study of the tribe Caprini (Bovidae, Antilopinae), J. Mol. Evol. 68 (4), 293–310.CrossRefGoogle Scholar
  11. Hassanin, A., Delsuc, F., Ropiquet, A., Hammer, C, Jansen van Vuuren, B., Matthee, C., Ruiz-Garcia, M., Catzeflis, F., Areskoug, V., Nguyen, T.T., Couloux, A., 2012. Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes, C. R. Biol. 335, 32–50.CrossRefGoogle Scholar
  12. IUCN Red List of Threatened Species, Version 2013.1, www.iucnredlist.org (downloaded 12.09.13).Google Scholar
  13. Matthee, C.A., Davis, S.K., 2001. Molecular insights into the evolution of the family Bovidae: a nuclear DNA perspective, Mol. Biol. Evol. 18 (7), 1220–1230.CrossRefGoogle Scholar
  14. Nowak, R.M., 1999. Walker’s Mammals of the World. The Johns Hopkins University Press, Baltimore.Google Scholar
  15. Nylander, J.A.A., 2004. MrModeltest v2. Program Distributed by the Author. Evolutionary Biology Centre, Uppsala University.Google Scholar
  16. Pitra, C, Kock, R.A., Hofmann, R., Lieckfeldt, D., 1998. Molecular phylogeny of the critically endangered Hunter’s antelope (Beatragus hunteri Sclater 1889), J. Zool. Syst. Evol. Res. 36, 179–184.CrossRefGoogle Scholar
  17. Rambaut, A., Drummond, A.J., 2007. Tracer v1.4, Available from: http:// beast.bio.ed.ac.uk/TracerGoogle Scholar
  18. Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models, Bioinformatics 19, 1572–1574.CrossRefGoogle Scholar
  19. Ropiquet, A., Li, B., Hassanin, A., 2009. SuperTRI: a new approach based on branch support analyses of multiple independent data sets for assessing reliability of phylogenetic inferences, C. R. Biol. 332 (9), 832–847.CrossRefGoogle Scholar
  20. Sambrook, J., Russell, D.W., 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, New York.Google Scholar
  21. Schikora, T., (Dissertation) 2012. Climate-linked temporal and spatial patterns in the evolution of African bovids. Goethe-Universität Frankfurt am Main.Google Scholar
  22. Swafford, D.L., 2003. PAUP*: Phylogenetic Analysis Using Parsimony *and Other Methods. Version 4. Sinauer Associates, Sunderland, MA.Google Scholar
  23. Thomas, H., 1906. On a new pygmy antelope obtained by Col. J. J. Harrison in the Semliki forest. Ann. Mag. Nat. Hist. 18 (7), 149.Google Scholar
  24. Xu, S.Q., Yang, Y.Z., Zhou, J., Jing, G.E., Chen, Y.T., Wang, J., Yang, H.M., Wang, J., Yu, J., Zheng, X.G., Ge, R.L., 2005. A mitochondrial genome sequence of the Tibetan antelope (Pantholops hodgsonii). Genomics Proteomics Bioinform. 3(1), 5–17.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2014

Authors and Affiliations

  1. 1.Department of ZoologyUniversity of CambridgeUK
  2. 2.Museum für NaturkundeLeibniz-Institut für Evolutions-und BiodiversitätsforschungBerlinGermany
  3. 3.Biodiversität und Klima ForschungszentrumGermany
  4. 4.Zoo DortmundDortmundGermany

Personalised recommendations