Advertisement

Mammalian Biology

, Volume 79, Issue 4, pp 230–239 | Cite as

Comparative quantitative investigations on brains of wild cavies (Cavia aperea) and guinea pigs (Cavia aperea f. porcellus). A contribution to size changes of CNS structures due to domestication

  • Dieter C. T. KruskaEmail author
Original Investigation

Abstract

Intraspecific allometric calculations of the brain to body size relation revealed distinct differences between 127 (67; 60) ancestral wild cavies and 82 (37; 45) guinea pigs, their domesticated relatives. The dependency of both measures from one another remained the same in both animal groups but the brains of guinea pigs were by 14.22% smaller at any net body weight. Consistent with results in other species the domestication of Cavia aperea is also characterized by a decrease of brain size. Fresh tissue sizes of the five brain parts medulla oblongata, cerebellum, mesencephalon, diencephalon and telencephalon were determined for 6 cavies and 6 guinea pigs by the serial section method. Additionally the sizes of 16 endbrain structures and those of the optic tract, the lateral geniculate body and the cochlear nucleus were measured. Different decrease values resulted for all these structures concomitant with domestication as was calculated from the amount of total brain size decrease and average relative structure values in the wild as well as the domesticated brain. The size decrease of the entire telencephalon (-13.7%) was within the range of the mean overall reduction as similarly was the case for the total neocortex (-10.7%) whereas the total allocortex (-20.9%) clearly was more strongly affected. The size decrease of the olfactory bulb (-41.9%) was extreme and clearly higher than found for the secondary olfactory structures (around -11%). The primary nuclei of other sensory systems (vision, audition) were decreased to less extent (lateral geniculate: -18.1%; cochlear nucleus: -12.6%). Mass decreases of pure white matter parts were nearly twice as high in contrast to associated grey matter parts (neocortex white versus grey matter; tractus opticus versus lateral geniculate body). The relatively great decrease values found for the limbic structures hippocampus (-26.9%) and schizocortex(-25.9%) are especially notable since they are in good conformity with domestication effects in other mammalian species. The findings of this study are discussed with regard to results of similar investigations on wild and domesticated gerbils (Meriones unguiculatus), the encephalization of the wild form, the special and species-specific mode and duration of domestication and in connection with certain behavioral changes as resulted from comparative investigations in ethology, socio-biology, endocrinology and general physiology.

Keywords

Cavia aperea Domestication Allometry Brain structure volumes Brain-behavior correlation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asher, M., Spinelli de Oliveira, E., Sachser, N., 2004. Social system and spatial organization of wild guinea pigs (Cavia aperea) in a natural population, J. Mammal. 85, 788–796.CrossRefGoogle Scholar
  2. Beauchamp, G.K., Wellington, J., 1981. Cross-species rearing influences urine preferences in wild guinea pigs, Physiol. Behav. 26, 1121–1124.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Beauchamp, G.K., Criss, B.R., Wellington, J., 1979. Chemical communication in Cavia: responses of wild (C aperea), domestic (C porcellus) and F1 males to urine, Anim. Behav. 27, 1066–1072.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bedi, K.S., Bhide, P.G., 1988. Effects of environmental diversity on brain morphology, Early Hum. Dev. 17, 107–143.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Belyaev, D.K., 1979. Destabilizing selection as a factor in domestication, J. Hered. 70, 301–308.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Boice, R., 1972. Some behavioral tests of domestication in Norway rats, Behaviour 42, 198–231.CrossRefGoogle Scholar
  7. Campi, K.L., Krubitzer, L, 2010. Comparative studies of diurnal and nocturnal rodents: differences in lifestyle result in alterations in cortical field size and number, J. Comp. Neurol. 518, 4491–4512.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Clutton-Brock, J., 1987. A Natural History of Domesticated Mammals. British Museum (Natural History), London.Google Scholar
  9. Corfield, J.R., Wild, J.M., Parsons, S., Kubke, M.F., 2012. Morphometric analysis of telencephalic structure in a variety of neognath and paleognath bird species reveals regional differences associated with specific behavioral traits, Brain Behav. Evol. 80, 181–195.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Dunnum, J.L., Salazar-Bravo, J., 2010. Molecular systematic, taxonomy and bio-geographyof the genus Cavia (Rodentia; Caviidae), J. Zool. Syst. Evol. Res. 48, 376–388.CrossRefGoogle Scholar
  11. Ebinger, P., 1980. Zur Hirn-Koerpergewichtsbeziehung bei Woelfen und Haushun-den sowie Haushundrassen, Z. Saeugetierkunde 45, 148–153.Google Scholar
  12. Ebinger, P., 1995. Domestication and plasticity of brain organization in mallards (Anas platyrhynchos). Brain Behav, Evol. 45, 286–300.Google Scholar
  13. Ebinger, P., de Macedo, H., Roehrs, M., 1984. Hirngroessenaenderung vomWild-zum Hausmeerschweinchen, Z. Zool. Syst. Evol. Forsch. 22, 77–80.CrossRefGoogle Scholar
  14. Eisenberg, J.F., 1989. Mammals of the Neotropics. Vol. 1. The Northern Cone (Panama, Colombia, Venezuela, Guyana, Suriname, French Guiana). University of Chicago Press, Chicago/London.Google Scholar
  15. Eisenberg, J.F., Redford, K.H., 1999. Mammals of the Neotropics. Vol. 3. The Central Neotropics (Ecuador, Peru, Bolivia, Brazil). University of Chicago Press, Chicago/London.Google Scholar
  16. Fischer, C.J., 1973. Vergleichende quantitative Untersuchungen an Wildkaninchen und Hauskaninchen. Veterinary Highschool Hannover (Diss. Thesis).Google Scholar
  17. Frick, H., Nord, H.J., 1963. Domestikation und Hirngewicht, Anat. Anz. 113, 307–316.PubMedPubMedCentralGoogle Scholar
  18. Green, J.D., Clemente, CD., de Groot, J., 1957. Rhinencephalic lesions and behavior in cats, J. Comp. Neurol. 108, 505–536.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Hendrichs, H., Stahnke, A., 1988. Meerschweinchenartige. In: Grzimek, B. (Ed.), Grzimeks Enzyklopaedie Saeugetiere, vol. 3. Kindler, Muenchen, pp. 325–342.Google Scholar
  20. Herre, W., Roehrs, M., 1990. Haustiere - zoologisch gesehen, 2nd ed. Fischer, Stuttgart/New York.CrossRefGoogle Scholar
  21. Hueckinghaus, F., 1961. Zur Nomenklatur und Abstammung des Hausmeer-schweinchens, Z. Saeugetierkunde 26, 108–111.Google Scholar
  22. Hueckinghaus, F., 1962. Vergleichende Untersuchungen ueber die Formenmannig-faltigkeit der Unterfamilie Caviinae Murray, 1886, Z. wiss. Zool. 166, 1–97.Google Scholar
  23. Jacobs, W.W., Beauchamp, G.K., 1977. Glucose preferences in wild and domestic guinea pigs, Physiol. Behav. 18, 491–493.CrossRefGoogle Scholar
  24. Krubitzer, L, Campi, K.L., Cooke, D.F., 2011. All rodents are not the same, A modern synthesis of cortical organization. Brain Behav. Evol. 78, 51–93.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Kruska, D., 1970. Vergleichend cytoarchitektonische Untersuchungen an Gehirnen von Wild- und Hausschweinen, Z. Anat. Entwickl.-Gesch. 131, 291–324.CrossRefGoogle Scholar
  26. Kruska, D., 1973. Cerebralisation, Hirnevolution und domestikationsbedingte Hirn-groessenaenderungen innerhalb der Ordnung Perissodactyla Owen, 1848 und ein Vergleich mit der Ordnung Artiodactyla Owen, 1848, Z. Zool. Syst. Evol. Forsch. 11, 81–103.CrossRefGoogle Scholar
  27. Kruska, D., 1975a. Vergleichend-quantitative Untersuchungen an den Gehirnen von Wander- und Laborratten. I. Volumenvergleich des Gesamthirns und der klassischen Hirnteile. J. Hirnforsch. 16, 469–483.Google Scholar
  28. Kruska, D., 1975b. Vergleichend-quantitative Untersuchungen an den Gehirnen von Wander- und Laborratten. II. Volumenvergleich allokortikaler Hirnzentren. J. Hirnforsch. 16, 485–496.Google Scholar
  29. Kruska, D., 1980. Domestikationsbedingte Hirngroessenaenderungen bei Saeugetieren, Z. Zool. Syst. Evol. Forsch. 18, 161–195.CrossRefGoogle Scholar
  30. Kruska, D., 1982. Hirngroessenaenderungen bei Tylopoden waehrend der Stammes-geschichte und in der Domestikation, Verh. Dtsch. Zool. Ges. 1982, 173–183.Google Scholar
  31. Kruska, D., 1987. How fast can total brain size change in mammals? J, Hirnforsch. 28, 59–70.Google Scholar
  32. Kruska, D., 1988. Mammalian domestication and its effect on brain structure and behavior. In: Jerison, H.Jerison, I. (Eds.), The Evolutionary Biology of Intelligence, vol. 17. Nato ASI Series in Ecology G, Springer, Stuttgart, pp. 211–250.CrossRefGoogle Scholar
  33. Kruska, D.C.T., 1993. Evidence of decrease in brain size in ranch mink, Mustela vison f.dom., during subadult postnatal ontogenesis, Brain Behav. Evol. 41, 303– 315.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Kruska, D.C.T., 1996. The effect of domestication on brain size and composition in the mink (Mustela vison). J, Zool. (London) 239, 645–661.CrossRefGoogle Scholar
  35. Kruska, D.C.T., 2005. On the evolutionary significance of encephalization in some eutherian mammals, Effects of adaptive radiation, domestication, and feraliza-tion. Brain Behav. Evol. 65, 73–108.PubMedPubMedCentralGoogle Scholar
  36. Kruska, D.C.T., 2007. The effects of domestication on brain size. In: Krubitzer, L., Kaas, J. (Eds.), Evolution of Nervous Systems. The Evolution of Nervous Systems in Mammals, vol. 3. Elsevier, London, pp. 143–153.CrossRefGoogle Scholar
  37. Kruska, D., Schott, U., 1977. Vergleichend-quantitative Untersuchungen an den Gehirnen von Wander- und Laborratten, III. Volumenvergleich optischer Hirnzentren. J. Hirnforsch. 18, 59–67.Google Scholar
  38. Kruska, D.C.T., Sidorovich, V.E., 2003. Comparative allometric skull morphometrics in mink (Mustela vison Schreber, 1777) of Canadian and Belarus origin; taxonomic status, Mamm. Biol. 68, 257–276.CrossRefGoogle Scholar
  39. Kruska, D.C.T., Steffen, K., 2009. Encephalization of Bathyergidae and comparison of brain structure volumes between the Zambian mole-rat Fukomys anselli and the giant mole-rat Fukomys mechowii. Mamm. Biol. 74, 298–307.CrossRefGoogle Scholar
  40. Kruska, D.C.T., Steffen, K., 2013. Comparative allometric investigations on the skulls of wild cavies (Cavia aperea) versus domesticated guinea pigs (Cavia aperea f, porcellus) with comments on the domestication of this species. Mamm. Biol. 78, 178–186.Google Scholar
  41. Kruska, D., Stephan, H., 1973. Volumenvergleich allokortikaler Hirnzentren bei Wild- und Hausschweinen, Acta Anat. 84, 387–415.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Kuenzl, C, Sachser, N., 1999. The behavioral endocrinology of domestication: a comparison between the domestic guinea pig (Cavia aperea f, porcellus) and its wild ancestor, the cavy (Cavia aperea). Horm. Behav. 35, 28–37.CrossRefGoogle Scholar
  43. Kuenzl, C, Kaiser, S., Meier, E., Sachser, N., 2003. Is a wild mammal kept and reared in captivity still a wild animal? Horm, Behav. 43, 187–196.Google Scholar
  44. Leybold, A., 2000. Vergleichend quantitative Untersuchungen an Gehirnen von Wild- und Labortieren der Art Meriones unguiculatus Milne-Edwards, 1867 (Mongolische Rennmaus). University Kiel (Diss. Thesis).Google Scholar
  45. Lewejohann, L, Pickel, T., Sachser, N., Kaiser, S., 2010. Wild genius- domestic fool? Spatial learning abilities of wild and domestic guinea pigs. Front. Zool. 7, 9.CrossRefGoogle Scholar
  46. Lorenz, K., 1959. Psychologie und Stammesgeschichte. In: Heberer, G. (Ed.), Evolution der Organismen., 2nd ed. Fischer, Stuttgart, pp. 131–170.Google Scholar
  47. Mason, I.L., 1984. Evolution of Domesticated Animals. Longman, London/New York.Google Scholar
  48. Morales, E., 1995. The Guinea Pig. Healing, Food, and Ritual in the Andes. University of Arizona Press, Arizona.Google Scholar
  49. Mueller-Haye, B., 1984. Guinea-pig or cuy. In: Mason, I.L(Ed.), Evolution of Domesticated Animals. Longman, London/New York, pp. 252–257.Google Scholar
  50. Nord, H.J., 1963. Quantitative Untersuchungen an Mus musculus domesticus Rutty, 1772, Zool. Anz. 170, 311–335.Google Scholar
  51. Pirlot, P., Bee de Speroni, N., 1987. Encephalization and brain composition in South American rodents (Caviidae, Cricetidae, Dasyproctidae), Mammalia 51, 305–320.CrossRefGoogle Scholar
  52. Plogmann, D., 1989. Programm zurdivariaten statistischen Analyse.Google Scholar
  53. Plogmann, D., Kruska, D., 1990. Volumetric comparison of auditory structures in the brains of European wild boars (Sus scrofa) and domestic pigs (Sus scrofa f, dom.). Brain Behav. Evol. 35, 146–155.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Redford, K.H., Eisenberg, J.F., 1992. Mammals of the Neotropics. Vol. 2. The Southern Cone (Chile, Argentina, Uruguay, Paraguay). University of Chicago Press, Chicago/London.Google Scholar
  55. Reitz, E.J., Wing, E.S., 1999. Zooarchaeology. University of Cambridge Press, Cambridge.Google Scholar
  56. Rempe, U., 1962. Ueber einige statistische Hilfsmittel moderner zoologisch-systematischer Untersuchungen, Zool. Anz. 169, 93–140.Google Scholar
  57. Richter, C.P., 1954. The effect of domestication and selection on the behavior of the Norway rat, J. Natl. Cancer Inst. 15, 727–738.PubMedPubMedCentralGoogle Scholar
  58. Roehrs, M., Ebinger, P., 1978. Die Beurteilung von Hirngroessenunterschieden zwis-chen Wild- und Haustieren, Z. Zool. Syst. Evol. Forsch. 16, 1–14.CrossRefGoogle Scholar
  59. Roehrs, M., Ebinger, P., 1983. Noch einmal: Woelfe mit unterschiedlichen Cephali-sationsstufen? Z, Zool. Syst. Evol. Forsch. 21, 314–318.CrossRefGoogle Scholar
  60. Rood, J.P., 1972. Ecological and behavioural comparisons of three genera of Argentine cavies, Anim. Behav. Monogr. 5, 3–83.CrossRefGoogle Scholar
  61. Sachser, N., 1998. Of domestic and wild guinea pigs: studies in socio-physiology, domestication, and social evolution, Naturwissenschaften 85, 307–317.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Sandweiss, D.H., Wing, E.S., 1997. Ritual rodents: the guinea pigs of Chincha, Peru, J. Field Archaeol. 24, 47–58.Google Scholar
  63. Schreiner, L, King, A., 1956. Rhinencephalon and behavior, Am. J. Physiol. 184, 486–490.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Spotorno, A.E., Marin, J.C., Manriquez, G., Valladares, J.P., Rico, E., Rivas, C., 2006. Ancient and modern steps during the domestication of guinea pigs (Cavia por-cellus L.), J. Zool. (London) 270, 57–62.Google Scholar
  65. Spotorno, A.E., Manriquez, G., Fernandez, L., Marin, A., Gonzalez, J.C., Wheeler, F.J., 2007. Domestication of guinea pigs from a southern Peru - northern Chile wild species and their pre-columbian mummies, Univ. Calif. Publ. Zool. 134, 367–388.Google Scholar
  66. Stahnke, A., 1987. Verhaltensunterschiede zwischen Wild- und Hausmeer-schweinchen, Z. Saeugetierkunde 52, 294–307.Google Scholar
  67. Steffen, K., Kruska, D., Tiedemann, R., 2001. Postnatal brain size decrease, visual performance, learning, and discrimination ability of juvenile and adult American mink (Mustela vison: Carnivora: Mammalia), Mamm. Biol. 66, 269–280.Google Scholar
  68. Stephan, H., 1960. Methodische Studien über den quantitativen Vergleich architek-tonischer Struktureinheiten des Gehirns, Z. wiss. Zool. 164, 143–172.Google Scholar
  69. Stephan, H., Frahm, H., Baron, G., 1981. New and revised data on volumes of brain structures in insectivores and primates, Folia Primatol. 35, 1–29.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Stephan, H., Baron, G., Frahm, H.D., 1991. Comparative Brain Research in Mammals. Vol. 1. Insectivora. Springer, Berlin/Heidelberg/New York.Google Scholar
  71. Stuermer, I.W., Wetzel, W., 2006. Early experience and domestication affect auditory discrimination learning, open field behavior and brain size in wild Mongolian gerbils and domesticated laboratory gerbils (Meriones unguiculatus forma domestica), Behav. Brain Res. 173, 11–21.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Stuermer, I.W., Plotz, K., Leybold, A., Zinke, O., Kalberlah, O., Samjaa, R., Scheich, H., 2003. Intraspecific allometric comparison of laboratory gerbils with Mongolian gerbils trapped in the wild indicates domestication in Meriones unguiculatus (Milne-Edwards, 1867) (Rodentia: Gerbillinae), Zool. Anz. 242, 249– 266.CrossRefGoogle Scholar
  73. Trillmich, F., 2000. Effects of low temperature and photoperiod on reproduction in the female wild Guinea pig (Cavia aperea).J, Mammal. 81, 586–594.CrossRefGoogle Scholar
  74. Trut, L.N., 1999. Early canid domestication: the farm-fox experiment, Am. Sci. 87, 160–169.CrossRefGoogle Scholar
  75. Trut, L, Oskina, L., Kharlamova, A., 2009. Animal evolution during domestication: the domesticated fox as a model, Bioessays 31, 349–360.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Weidemann, W., 1970a. Die Beziehungen von Hirngewicht und Koerpergewicht bei Woelfen und Pudeln sowie deren Kreuzungsgenerationen N 1 und N 2. Z. Saeugetierkunde 35, 238–247.Google Scholar
  77. Weidemann, W., 1970b. Vergleichende Untersuchungen an Gehirnen suedamerikanischer Nagetiere. Z. wiss. Zool. 181, 66–139.Google Scholar
  78. Wellington, J.L., Byrne, K.J., Preti, G., Beauchamp, G.K., Smith III, A.S., 1979. Perineal scent gland of wild and domestic guinea pigs, A comparative chemical and behavioral study. J. Chem. Ecol. 5, 737–750.Google Scholar
  79. Wing, E.S., 1977. Animal domestication in the Andes. In: Reed, C.A. (Ed.), Origins of Agriculture. Mouton Publishers, The Hague/Paris, pp. 837–857.Google Scholar
  80. Wing, E.S., 1986. Domestication of Andean mammals. In: Vuilleumier, F., Monas-terio, M. (Eds.), High Altitude Tropical Biogeography. Oxford University of Press, Oxford, pp. 246–264.Google Scholar
  81. Woods, C.A., Kilpatrick, C.W., 2006. Family Caviidae, In: Wilson, D.E., Reeder, D.A. (Eds.), Mammal Species of the World. A Taxonomic and Geographic Reference, vol. 2, 3rd ed. John Hopkins Press, Baltimore, pp. 1552–1553.Google Scholar
  82. Zeuner, F.E., 1963. A History of Domesticated Animals. Hutchinson, London.Google Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2014

Authors and Affiliations

  1. 1.Department Special ZoologyZoological Institute, Christian-Albrechts-University at KielOlshausenstrasseGermany

Personalised recommendations