Advertisement

Mammalian Biology

, Volume 79, Issue 3, pp 163–169 | Cite as

Dramatic increases in number of cerebellar granule-cell-Purkinje-cell synapses across several mammals

  • Chiming HuangEmail author
  • Samantha J. Gammon
  • Michael Dieterle
  • Rosa H. Huang
  • Lee Likins
  • R. E. Ricklefs
Original Investigation

Abstract

The classical comparative literature on mammalian brain evolution has mainly focused on brain mass measurements because larger brains are more likely to have more neurons to process information. The phylogenetic expansion in the mass of the cerebellum is as significant as that of the cerebral cortex. The synapse, however, has recently been recognized as the basic unit of neuronal information processing, including neuroplasticity. Here we hypothesize significant absolute and relative increases in the functionally important granule-cell-Purkinje-cell (gcPc) synapses as a salient feature of the evolving cerebellum. To probe evolutionary constraints, we define the gcPc circuitry with ten degrees of freedom, including number of granule cells, Purkinje cells, lengths of the granule cell axonal segments, linear densities of synapses along them, and physical dimensions of Purkinje as well as granule cell dendritic structures. We show that although only two of the ten parameters are not constrained and therefore can exhibit independent, comparative changes, there is a dramatic increase in the number of gcPc synapses from the rodent to the human cerebellum. By assigning a value of unity for the mouse, the ratio of the number of gcPc synapses from mouse, rat, cat, non-human primate, and human is 1:5.5:236:620:20,000, which greatly exceeds the ratio of increase in cerebellar mass (1:6:48:180:3000). Dramatic changes in the number of gcPc synapses can therefore occur despite evolutionary constraints and only modest changes in parameters of the neuronal circuitry. Increases in the number of gcPc synapses have important functional consequences as these synapses enhance the capacity of the cerebellum to code and process information, which directly impact memory and learning in both motor and non-motor tasks.

Keywords

Cerebellum Brain evolution Parallel fiber 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, B.B., Korbo, L., Pakkenberg, B., 1992. A quantitative study of the human cerebellum with unbiased stereological techniques. J. Comp. Neurol. 326, 549–560.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Andersen, B.B., Gundersen, H.J., Pakkenberg, B., 2003. Aging of the human cerebellum: a stereological study. J. Comp. Neurol. 466, 356–365.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Attwell, P.J., Ivarsson, M., Millar, L., Yeo, C.H., 2002. Cerebellar mechanisms in eye-blink conditioning. Ann. N.Y. Acad. Sci. 978, 79–92.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Apps, R., Garwicz, M., 2005. Anatomical and physiological foundations of cerebellar information processing. Nat. Rev. Neurosci. 6, 297–311.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bedi, K.S., Hall, R., Davies, C.A., Dobbing, J., 1980. A stereological analysis of the cerebellar granule and Purkinje cells of 30-day-old and adult rats undernourished during early postnatal life. J. Comp. Neurol. 193, 863–870.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Barmack, N.H., Yakhnitsa, V., 2011. Microlesions of the inferior olive reduce vestibular modulation of Purkinje cell complex and simple spikes in mouse cerebellum. J. Neurosci. 31, 9824–9835.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Brand, S., Dahl, A.L., Mugnaini, E., 1976. The length of parallel fibers in the cat cerebellar cortex. An experimental light and electron microscopic study. Exp. Brain Res. 26, 39–58.PubMedPubMedCentralGoogle Scholar
  8. Chklovskii, D.B., Mel, B.W., Svoboda, K., 2004. Cortical rewiring and information storage. Nature 431, 782–788.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Clark, D.A., Mitra, P.P., Wang, S.S., 2001. Scalable architecture in mammalian brains. Nature 411, 189–193.PubMedCrossRefPubMedCentralGoogle Scholar
  10. DeFelipe, J., 2011. The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Front. Neuroanat. 5, 29,  https://doi.org/10.3389/fnana.2011.00029 (published 16 May 2011).
  11. De Zeeuw, C.I., Yeo, C.H., 2005. Time and tide in cerebellar formation. Curr. Opin. Neurobiol. 15, 667–674.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Fan, H., Favero, M., Vogel, M.W., 2001. Elimination of Bax expression in mice increases cerebellar Purkinje cell numbers but not the number of granule cells. J. Comp. Neurol. 436, 82–91.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Fox, C.A., Barnard, J.W., 1957. A quantitative study of the Purkinje cell dendritic branchlets and their relationship to afferent fibers. J. Anat.(London) 91, 299–313.Google Scholar
  14. Gottlieb, G., 1984. Evolutionary trends and evolutionary origins: relevance to theory in comparative psychology. Psychol. Rev. 91, 448–456.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Gundappa-Sulur, G., De Schutter, E., Bower, J.M., 1999. Ascending granule cell axon: an important component of the cerebellar cortical circuitry. J. Comp. Neurol. 408, 580–596.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Hansel, C., Linden, D.F., D’Angelo, E., 2001. Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat. Neurosci. 4, 407–475.CrossRefGoogle Scholar
  17. Harris, K.M., Stevens, J.K., 1988. Dendritic spine of rat cerebellar Purkinje cells: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 8, 4455–4469.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Harvey, R.J., Napper, R.M.A., 1988. Quantitative study of granule and Purkinje cells in the cerebellar cortex of the rat. J. Comp. Neurol. 274, 151–157.PubMedCrossRefGoogle Scholar
  19. Herculano-Houzel, S., 2009. The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3, 31,  https://doi.org/10.3389/neuro.09.031.2009.
  20. Herculano-Houzel, S., 2010. Coordinated scaling of cortical and cerebellar numbers of neurons. Front. Neuroanat. 4, 1–8 (art 12).Google Scholar
  21. Herculano-Houzel, S., 2011. Not all brains are made the same: new views on brain scaling in evolution. Brain Behav. Evol. 78, 22–36.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Herculano-Houzel, S., Mota, B., Lent, R., 2006. Cellular scaling rules for rodent brains. Proc. Natl. Acad. Sci. U.S.A. 103, 12138–12143.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Huang, C., Brown, N., Huang, R., 1999. Age-related changes in the cerebellum: parallel fibers. Brain Res. 840, 148–152.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Huang, C., Wang, L., Huang, R., 2006a. Cerebellar granule cell: ascending axon and parallel fiber. Eur. J. Neurosci. 23, 1731–1737.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Huang, C., 2008. Implications on cerebellar function from information coding. Cerebellum 7, 314–331.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Huang, C., Miyamoto, H., Huang, R., 2006b. The mouse cerebellum from one to thirty-four months: parallel fibers. Neurobiol. Aging 27, 1715–1718.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Ito, M., 1984. The Cerebellum and Neural Control. Raven Press, New York.Google Scholar
  28. Ito, M., 2006. Cerebellar circuitry as a neuronal machine. Prog. Neurobiol. 78, 272–303.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Jorntell, H., Hansel, C., 2006. Synaptic memories upside down: bidirectional plasticity at cerebellar parallel fiber-Purkinje cell synapses. Neuron 52, 227–238.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Lange, W., 1975. Cell number and cell density in the cerebellar cortex of man and some other mammals. Cell Tissue Res. 157, 115–124.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Llinas, R. (Ed.), 1969. Neurobiology of Cerebellar Evolution and Development. Amer. Med. Assoc, Chicago.Google Scholar
  32. Mayhew, T.M., 1991. Accurate prediction of Purkinje cell number from cerebellar weight can be achieved with the fractionator. J. Comp. Neurol. 308, 162–168.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Manto, M., Gruol, D., Schmahmann, J., Koibuchi, N., Rossi, F. (Eds.), 2012. Handbook of the Cerebellum and Cerebellar Disorders. Springer, New York.Google Scholar
  34. Napper, R.M.A., Harvey, R.J., 1988a. Number of parallel fiber synapses on an individual Purkinje cell in the cerebellum of the rat. J. Comp. Neurol. 274, 168–177.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Napper, R.M.A., Harvey, R.J., 1988b. Quantitative study of the Purkinje cell dendritic spines inthe rat cerebellum. J. Comp. Neurol. 274, 158–167.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Palay, S.L., Palay, V., 1974. The Cerebellar Cortex: Cytology and Organization. Springer-Verlag, New York.CrossRefGoogle Scholar
  37. Palkovitz, M., Mezey, E., Hamori, J., Szentagothai, J., 1971a. Quantitative histological analysis of the cerebellar nucleus in the cat. I. Numerical data on cells and on synapses. Exp. Brain Res. 28, 189–209.Google Scholar
  38. Palkovitz, M., Magyar, P., Szentagothai, J., 1971b. Quantitative histological analysis of the cerebellar cortex in the cat. II. Cell numbers and densities in the granular layer. Brain Res. 32, 15–30.Google Scholar
  39. Palkovitz, M., Magyar, P., Szentagothai, J., 1971c. Quantitative histological analysis of the cerebellar cortex in the cat. III. Structural organization of the molecular layer. Brain Res. 34, 1–18.Google Scholar
  40. Pichitpornchai, C., Rawson, J.A., Rees, S., 1994. Morphology of parallel fibers inthe cerebellar cortex of the rat: an experimental light and electron microscopic study with biocytin. J. Comp. Neurol. 342, 206–220.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Portmann, A., 1947. Etudes sur la cerebralisation chez les oiseauz: II Les indices intra-cerebraux. Atauda 15, 161–171.Google Scholar
  42. Rockel, A.J., Hiorns, R.W., Powell, T.P., 1980. The basic uniformity in structure of the neocortex. Brain 103, 221–244.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Shepherd, G.M.G., Raastad, M., Andersen, P., 2002. General and variable features of varicosity spacing along unmyelinated axons in the hippocampus and cerebellum. Proc. Natl. Acad. Sci. U.S.A. 99, 6340–6345.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Smoljaninov, V.V., 1966. Structural-functional models of certain biological system. In: Gelfand, I.M., Gurfinkel, V.S., Fomin, S.V., Cetlin, M.L. (Eds.), Several Characteristics in the Organization of the Cerebellum. Izdatelstvo Nauka, Moscow, pp. 203–267 (in Russian).Google Scholar
  45. Stephan, H., Frahm, H., Baron, G., 1981. New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol. 35, 1–29.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Strick, P.L., Dum, R.P., Fiez, J.A., 2009. Cerebellum and nonmotor function. Ann. Rev. Neurosci. 32, 413–434.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Sturrock, R.R., 1989. Changes in neuron number in the cerebellar cortex of the aging mouse. J. Hirnforsch. 30, 499–503.PubMedPubMedCentralGoogle Scholar
  48. Sultan, F., 2002. Analysis of mammalian brain architecture. Nature 415, 133–134.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Thomson, R.F., Bao, S., Chen, L., Cipriano, B.D., Grethe, J.S., Kim, J.J., Thompson, J.K., Tracy, J.A., Weninger, M.S., Krupa, D.J., 1997. Associate Learning. In: Schmahmann, J.D. (Ed.), The Cerebellum and Cognition. Academic Press, New York.Google Scholar
  50. Woodruff-Pak, D.S., 2006. Stereological estimation of Purkinje neuron number in C57BL/6 mice and its relation to associative learning. Neuroscience 141, 233–243.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Xu-Friedman, M.A., Harris, K.M., Regehr, W.G., 2001. Three-dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. J. Neurosci. 21, 6666–6680.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Yopak, K.E., Lisney, T.J., Darlington, R.B., Collin, S.P., Montgomery, J.C., Finlay, B.L., 2010. A conserved pattern of brain scaling from sharks to primates. Proc. Natl. Acad. Sci. U.S.A. 107, 12946–12951.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Säugetierkunde 2014

Authors and Affiliations

  • Chiming Huang
    • 1
    Email author
  • Samantha J. Gammon
    • 1
  • Michael Dieterle
    • 1
  • Rosa H. Huang
    • 3
  • Lee Likins
    • 1
  • R. E. Ricklefs
    • 2
  1. 1.School of Biological SciencesUniversity of Missouri-Kansas CityKansas CityUnited States
  2. 2.Department of BiologyUniversity of Missouri-St. LouisSt. LouisUnited States
  3. 3.School of MedicineUniversity of Missouri-Kansas CityKansas CityUnited States

Personalised recommendations